Integrating Theory-Driven and Data-Driven
Approaches to Affective Computing via
Deep Probabilistic Programming

Desmond Ong
National University of Singapore
& A*STAR Singapore

Together with Zhi-Xuan Tan (A*STAR->MIT), Harold Soh (NUS),
Jamil Zaki (Stanford), & Noah Goodman (Stanford)

Reference: https://arxiv.org/abs/1903.06445
Tutorial website: https://desmond-ong.qgithub.io/pplAffComp/

School of a Agency for
: : Science, Technology
ComPUtlng and Research

SINGAPORE

https://arxiv.org/abs/1903.06445
https://desmond-ong.github.io/pplAffComp/

Tutorial Outline

e What is & Why (deep) probabilistic programming?
* |ntro to probabilistic programming concepts

« Pyro®) |

* Model Building vs. Model Solving

 Worked Examples (in Affective Computing)

* |llustrate with a simple dataset, and simple
“puilding-block” models

* Designed to be easy to compare different
theories

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

Tutorial Outline

e What is & Why (deep) probabilistic programming?
* |ntro to probabilistic programming concepts

* Pyro% |

* Model Building vs. Model Solving

1 hr 20 mins
(9am-10:20am)

20 min break

e Worked Examples (in Affective Computing) (until 10:40am)

* |llustrate with a simple dataset, and simple
“puilding-block” models

| | 1 hr 20 mi
* Designed to be easy to compare different (unrtil 12Tolr?1?

theories
Google Colab:

No installation required!

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

Learning Objectives

By the end of the tutorial,

Tutorial participants will be introduced to deep probabilistic

programming as a novel paradigm for building affective computing
models, via worked examples.

Tutorial participants will be introduced to several key concepts in
probabilistic programming, such as stochastic functions,
compositionality and recursion, and non-deterministic control flow.

Tutorial participants will be introduced to stochastic variational
iInference as a powerful optimisation algorithm to perform

approximate inference, and how to use SVI in deep probabilistic
programs.

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

I A brief (and selective) history

Perceptron

<1960 (Rosenblatt, 1958) Bayesian

Networks

Convolutional NNs
(e.g., Pearl, 1980s)

(Fukushima’s

1980 Backpropagation Neocognitron, 1980)

(Rumelhart, Hinton &
Williams, 1986)

Recurrent NNs Probabilistic
Parallel Distributed (€.9., Elman, 1350) Programming
Processing Languages
(Rumelhart & McClelland, 1986) (1990s-2000s)
2000
2010
2018

A\ calculus
(Church, 1930s)

Lisp
(McCarthy, 1958)

PROLOG
(1972)

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

I A brief (and selective) history

Perceptron
<1960 (Rosenblatt, 1958)

Backpropagation
1980 (Rumelhart, Hinton &
Williams, 1986)

Parallel Distributed

Processing
(Rumelhart & McClelland, 1986)

2000

2010

2018

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK

Convolutional NNs
(Fukushima’s
Neocognitron, 1980)

Recurrent NNs
(e.g., EIman, 1990)

Universal
Probabilistic
Programming
Languages (2008)

DARPA PPAML
(2013-2017)

Bayesian

Networks
(e.g., Pearl, 1980s)

Probabilistic
Programming

Languages
(1990s-2000s)

Deep
Probabilistic
Programming

Languages
(2016, 2017)

A\ calculus
(Church, 1930s)

Lisp
(McCarthy, 1958)

PROLOG
(1972)

Desmond Ong, NUS/A*STAR

Why (deep) Probabilistic Programming?

Probabilistic Modelling: Representing and handling uncertainty
|
Programming Languages: "Universality”, Expressivity

+
Deep Learning: Scalability, Flexibility

* Probabilistic Programs capture abstract knowledge about the
world, represented as executable programs.

* Model different sources of uncertainty (more on that later...)

® “see also Ghahramani (Nature 2015) for an argument for probabilistic machine learning

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

Why (deep) Probabilistic Programming?

* Abstraction away from inference

e Modeller can focus on modelling, call
libraries to do inference.

e e.g., How PyTorch, Tensorflow
abstracts out backprop

* Many PPLs come with general-purpose | |rference
approximate inference algorithms:
Variational inference; MCMC, etc

Model

Just add
data

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

Why (deep) Probabilistic Programming?

Today: http://www.probabilistic-programming.orqg lists over
30+ PPLs. Some examples:

e Church, 2008, Lisp/Scheme (£lip 0.5)
* WebPPL (2014), webppl.org, (subset of) Javascript

var geometric = function|() {
return flip(.5) ? 0 : geometric() + 1;
}

Deep PPLs combine theory-driven (“probabilistic”) and
data-driven (“deep”) approaches,

e allowing probabilistic models to learn from high-dimensional,
unstructured data (e.g. video).

Natively integrated with deep learning libraries.
* Pyro (Uber Al labs 2017; integrated into PyTorch),
* Edward (2016) / Tensorflow Probability (Google; 2018)

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

http://www.probabilistic-programming.org
http://webppl.org

Examples of Probabilistic Programming (i)

Handwriting recognition (Lake, Salakhutdinov, & Tenenbaum, 2015)

generateCharacter() = {

set of primitive strokes <- Sam p|e_Parts(num_part5)
Strokes v > . ;
// sample with motor variance
| &GO || | |
7 \’/ relations <- Sample_Relations()
Parts // variance in where (sub)parts start
l q d // and where (sub)parts are joined
\ .
return compose , relations
Characters pose()
/I character concept
}
TINTETH T hHEEWwe S NCODUIVTY S ¢ HUNOPEZ A % & &5
LUNSTHIME] fagpabCRLt 783 58 3 AVUMAT 389« v
?HD>T“MH3|ﬁ@tQ%Yﬂdi§S®Gu%wdhO@e%w@
ITIE VNS N 3 =meme Mgl 210 F eMaBIT ¢ Q3 W3 Y
JEFCHW I3 wgadEmkertiin uNAdRIEZ®RI 45 T TFSBRRPX
I BO 3R ol m 08 eBaean x 0 RAL £ x TR ZYBF h
GOQAGIP L >N AT gT ggnaud Taagdgdin~nr Ve o JrIdNOG
AUALTCY o Wi BT ATh IS ARHET M v3LIYANLLS
WO F B0 § oL TVEIFT A) ¢ nqg,ﬁwqaq L N S G G Y
NabPulnNdlh hawmt m3FTded o5 nuyd3ndywH do
EIRrNUGCQOPRYMNTIT gy THAS -0 0dd AR APYXDL
Lo Yny Gy S Tuaumad HABE L = wbH poC 4T 54 %
coss e PPN S6SSED e v me? 2y T Y gt WY TP 0T Sgmples from the
€ aNs AaPEAYXNOIPOD g aremarToy P LlAadds WTTY09 .
pare CANYD LK AT KEE mwams s 044 0 AW U 8 5 T 0y OMNiglot dataset
Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

Examples of Probabilistic Programming (i1)

Pragmatic understanding in the Rational Speech Acts model (Goodman & Frank, 2016)

LiteralListener = function() {
return consistent with [[1]
Y
ﬁiiuﬁ Speaker = function() {
return proportional to probability
that LiteralListener() ==
Y
PragmaticListener = function() {
return proportional to probability

that Speaker() ==
pragmati @ \
Listener L ~ ~r Speaker

Frank & Goodman 2012
Goodman & Stuhlmuller, 2013
Goodman & Frank, 2016

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

Features of Probabilistic Programs (i)

e Stochastic programs => Model different sources of uncertainty
 |ake et al: Motor variance
 Rational Speech Acts: Uncertainty in semantics and speaker goals
* More generally, uncertainty can be:
* (i) incomplete knowledge

* About the world and others' unobservable mental states; noisy
sensor data

e (ii) incomplete theory
e (iii) inherent randomness in the generative process.
e Affective Computing:
* Emotions require inference about latent mental states
* |ndividual differences not yet modelled by scientists
* Inherent randomness

Ong, Soh, Zaki, & Goodman, in press
Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

Features of Probabilistic Programs (ii)

* Modularity and compositionality

Abstract processes into "modules”, re-use modules
Build up complexity
Examples:

 |ake et al: Hierarchy of strokes -> sub-parts -> parts -> characters

 Rational Speech Acts: Nested programs for social reasoning
(X thinking about Y thinking about Z)

e Affective Computing:

Separate and compose different components
Structured reasoning

Goal-directed actions [as in POMDPs]

* e.g., choosing action to maximise Bob's happiness
Emotion + Mental States + Norms + ...

Deep PPL libraries

Ong, Soh, Zaki, & Goodman, in press

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

General Recipe

“Human
parameters”

Specific
Application
Requirements

* Writing down a generative model
as a probabilistic program \ | /

* From Theory

Psychological

* Modelling: Theory

Model

e Has parameters to be learnt

Just add

* Inference: data

* |earning parameters by

conditioning on data Inference

* Find (or approximate)
P(parameters | data)

Stochastic primitives in Pyro (1)

e Stochastic functions:

create a normal distribution object
normal = pyro.distributions.Normal(0, 1)
draw a sample from N(0,1)

X = pyro.sample('my sample”, normal)

https://pyro.ai/examples/intro part i.html
https://probmods.org

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

https://pyro.ai/examples/intro_part_i.html
https://probmods.org

Stochastic primitives in Pyro (ii1)

e Compositionality and Recursion

geometric = distribution over number of failures
before the first success
def geometric(probSuccess, t=0):
X = pyro.sample("x {}".format(t),
pyro.distributions.Bernoulli(probSuccess))
if x.item() ==
return 0
else:
return 1 + geometric(probSuccess, t+1)

https://pyro.ai/examples/intro part i.html

https://probmods.org

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

https://pyro.ai/examples/intro_part_i.html
https://probmods.org

Stochastic primitives in Pyro (iii)

e Non-deterministic control flow

def leftOrRight(p):
coinFlip = pyro.sample(pyro.distributions.Bernoulli(p))

if coinFlip.item() ==
. # do something: go left

else:
do something else: go right

Play aggressively Play cooperatively

_ Recurse about partner

Some parts of the code may never get run!

https://pyro.ai/examples/intro part i.html
https://probmods.org

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

https://pyro.ai/examples/intro_part_i.html
https://probmods.org

Inference as conditioned sampling

2) Noisy measurement of weight measurement | weight ~ N(weight, 0.75)

def scale(guess):
weight = pyro.sample("weight", dist.Normal(guess, 1.0))
return pyro.sample('measurement”, dist.Normal(weight, 0.75))

conditioned scale = pyro.condition(scale, data={"measurement": 9.5})

best guess = 8.5 # let's say

use importance sampling to infer the posterior

posterior = pyro.infer.Importance(conditioned scale,
num samples=) .run(best guess)

200 A
150

sample from the marginal and plot 100

marginal = pyro.infer.EmpiricalMarginal (posterior, "weight")
samples = [marginal().detach() for in range(1000)] ol
plt.hist(samples)

0_
The true posterior, in this case for these values, can be analytically

75 8.0 85 g0 95 100 105
solved: N(9.14, 0.6). See links below. https://pyro.ai/examples/intro _part _ii.html

https://pyro.ai/examples/csis.html
Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

https://pyro.ai/examples/intro_part_ii.html
https://pyro.ai/examples/csis.html

Variational Inference

Don't know the true posterior p(z|x)

e
IR
’ \‘
i -
)
’

|
1
1
|}
A
L)
-
.
‘.
‘.
A
A
‘.

Approximate by some ("nice") g(z) that is "close" to p(z|x)

e We define a "Closeness" metric: the Kullback-Leibler Divergence
between q and p, KL (¢(z) | |p(z|x)) = E[log ¢(z) — log p(z|x)]

e Want to choose g(z) to minimise the KL:

q*(z) = argmin KL (q(2) | | p(z| x))

 However, this is still intractable because the KL still contains p(z|x)

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

Variational Inference

Don't know the true posterior p(z|x)

.
’ \‘
I -
)
’

|
1
1
|}
A
L)
-
.
‘.
‘.
>
A
‘.

Approximate by some ("nice") g(z) that is "close" to p(z|x)

e But, some algebra shows:

log p(x) = KL (q(Z)\ \p(z\x)) llogp(x z) — log q(z)]

Evidence Lower BOund

* Thus, we can maximise the ELBO as a proxy for maximising log p(x)!

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

Variational Inference

e Variational Inference replaces the (computationally-intractable)
problem of inference in a probabilistic model:

* With a proxy (and computationally-cheaper) optimisation problem:
(also called the variational objective).

 This is the key idea behind recent deep generative models,
especially the Variational Autoencoder (VAE; Kingma & Welling,
2014)

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

Variational Inference in Pyro 'model’

def model(...):

pyro.sample("z", ...)

"gq(z)", e.g. assume Normal with variational parameters mu,
def guide(...):

sigma

mu = pyro.param('mu"', torch.tensor(0.0))
sigma = pyro.param(' 'sigma'’, torch.tensor(1.0),

constraint=constraints.positive)
pyro.sample("z", dist.Normal(mu, sigma))

stochastic variational inference
svi = SVI(model, guide, optimizer, loss fn)

abstracted away from model definition
for step in range(num steps):
svi.step(data)

https://pyro.ai/examples/svi_part_i.html

Probabilistic Programming and Affective Computing Tutorial @ ACII 2019, Cambridge UK Desmond Ong, NUS/A*STAR

Breaktime!

+ I

Worked examples in affective computing

Tutorial website: https://desmond-ong.github.io/pplAffComp/

https://desmond-ong.github.io/pplAffComp/

My Motivating Example

(Ong, Zaki, & Goodman, 2015)

Dataset

v v
. Paul's face
after seeing the wheel

+ Participant rating of agent’s emotion

P(emotion|outcome, face) o

P(emotion|outcome) P(emotion|face)

P(emotion)

(Ong, Zaki, & Goodman, 2015)

Example 1: Modelling Appraisals

[via a (Bayesian) Regression]

¢ Incorporating (an instance of) appraisal theory
(abstracted into a compute _appraisal() function)

1 class AppraisalRegressionModel():
2 def condition(self, outcome, emotion):
3 appraisal = self.compute appraisal (outcome)

// # sample all the b parameters

4 bl = pyro.sample("bl", Normal(mu 1,sd 1) il /
. e ' Appraisal | <~

5 prediction = sum([b 1, ...] * appraisal) | | | \\

6 pyro.sample("observed emotion",

Normal (prediction, 1), obs = emotion)
Emotion
7 Rati
atings
N

Example 2: Representing/generating faces

¢ Learn from high-dimensional data
(abstracted into a decoder() function, which could be a neural network)

1l class VAE():

2 def condition(self, image):
// # sample z given priors

3 n n

Zz = pyro.sample("z", //
Normal (prior location, prior scale)) l K//
// # generate face from z, conditioned on observed image
4 loc = self.Face Decoder(z) Facial
5 pyro.sample("face", dist.Bernoulli(loc), obs=image) Expressions
6 N

- S W S S W W

Reconstructions

Example 3: Modelling emotion

recognition from faces :
. after :::ilr.\sgftaho:wheel
1 class SemiSupervisedVAE():

2 def condition(self, outcome, emotion, image):
// # generate emotion from outcome,

conditioned on observed data

3 prediction mean = self.outcomes to emotions(outcomes) l
4 emo = pyro.sample("emo", Normal(prediction mean, 1), | " A .
obs=emotion)

¢ Learning emotion information in faces

// # sample z given priors
5 Zz = pyro.sample('"z",

Normal (prior location, prior scale))
// # generate face using emotion and z,

conditioned on observed image /
6 zEmo = torch.cat((z, emo), 1) # concatenate
7 loc = self.zEmoToFace Decoder (zEmo)
8 pyro.sample("face", dist.Bernoulli(loc), Expressions
obs=image) N

Example 4: Learning the latent affect space

Y% Learn a latent “affect” variable

1 class MultimodalVAE():
2 def condition(self, outcome, emotion, image):

// # generate a new emotion from outcome

3 prediction mean = self. (outcome)

// # sample affect given priors

4 affect = pyro.sample("affect", Normal(prediction mean, 1)) l

// # generate the facial expression, ¥ 1
condition on the observed data :Appraisal:

5 face mean = self. (affect)]

6 face = pyro.sample("face", Bernoulli(face mean), obs=image)

// # generate the outcome ratings, l
condition on the observed data

7 emo mean = self. (affect)

8 emo = pyro.sample("emo", Normal(emo mean, 1), obs=emotion)

9

Emotion
Ratings

Facial
Expressions

Summary

Combining theory-based and data-driven approaches.

Abstraction: PPLs abstract away inference, allowing modellers to focus
on model building.

(Deep) PPLs combine the benefits of probabilistic approaches:
e Encode domain-knowledge
* Model different sources of uncertainty

With the benefits of deep learning:
 Optimized approximate-inference algorithms e.g. variational inference
e Embed parts that are best learnt via deep learning ("perceptual” tasks)

And the benefits of programming languages:
 Modularity: Test different theories (of emotion) by substituting out modules
e Compositionality: build up more complex reasoning

I

A % 3
.\ : “) : 1) -
2T] »
A

¥ v

Zhi-Xuan Tan Harold Soh Jamil Zaki ~ Noah Goodman Jyp Ghen Eli Bingham

(MIT) (Nat’l University (Stanford) (Stanford, Uber)
of Singapore) Uber Al Labs .JI

I Thanks!

dco@comp.nus.edu.sg
web.stanford.edu/~dco

Reference paper:

Ong, D. C., Soh, H., Zaki, J., & Goodman, N. D. (in press). Applying Probabilistic
Programming to Affective Computing. IEEE Transactions on Affective Computing
https://arxiv.org/abs/1903.06445

Materials/Code: https://desmond-ong.github.io/pplAffComp/

https://arxiv.org/abs/1903.06445
https://desmond-ong.github.io/pplAffComp/
mailto:dco@comp.nus.edu.sg
http://web.stanford.edu/~dco

