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Tutorial Outline

• What is & Why (deep) probabilistic programming?

• Intro to probabilistic programming concepts

• Pyro


• Model Building vs. Model Solving


• Worked Examples (in Affective Computing)

• Illustrate with a simple dataset, and simple 

“building-block” models

• Designed to be easy to compare different 

theories
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}1 hr 20 mins 
(9am-10:20am)

20 min break 
(until 10:40am)

1 hr 20 mins 
(until 12pm)}

Google Colab: 
No installation required!



Learning Objectives

Tutorial participants will be introduced to deep probabilistic 
programming as a novel paradigm for building affective computing 
models, via worked examples.


Tutorial participants will be introduced to several key concepts in 
probabilistic programming, such as stochastic functions, 
compositionality and recursion, and non-deterministic control flow.


Tutorial participants will be introduced to stochastic variational 
inference as a powerful optimisation algorithm to perform 
approximate inference, and how to use SVI in deep probabilistic 
programs.

By the end of the tutorial,
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• Probabilistic Programs capture abstract knowledge about the 
world, represented as executable programs. 

• Model different sources of uncertainty (more on that later…)

• *see also Ghahramani (Nature 2015) for an argument for probabilistic machine learning

Why (deep) Probabilistic Programming?
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Probabilistic Modelling: Representing and handling uncertainty

Programming Languages: "Universality", Expressivity
+

Deep Learning: Scalability, Flexibility
+



• Abstraction away from inference 
• Modeller can focus on modelling, call 

libraries to do inference.

• e.g., How PyTorch, Tensorflow 

abstracts out backprop

• Many PPLs come with general-purpose 

approximate inference algorithms: 
Variational inference; MCMC, etc

Why (deep) Probabilistic Programming?
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Model

Inference

Just add 
data



• Today: http://www.probabilistic-programming.org lists over  
30+ PPLs. Some examples:

• Church, 2008, Lisp/Scheme

• WebPPL (2014), webppl.org, (subset of) Javascript 

 
 

• Deep PPLs combine theory-driven (“probabilistic”) and  
data-driven (“deep”) approaches, 

• allowing probabilistic models to learn from high-dimensional,  

unstructured data (e.g. video). 


• Natively integrated with deep learning libraries.

• Pyro (Uber AI labs 2017; integrated into PyTorch), 

• Edward (2016) / Tensorflow Probability (Google; 2018)

Why (deep) Probabilistic Programming?

(flip 0.5)

var geometric = function() { 
  return flip(.5) ? 0 : geometric() + 1; 
}
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set of primitive strokes
generateCharacter() = {
  parts <- Sample_Parts(num_parts)
  // sample with motor variance

  relations <- Sample_Relations(parts)
  // variance in where (sub)parts start
  // and where (sub)parts are joined

  return compose(parts, relations)
  // character concept
}

Handwriting recognition (Lake, Salakhutdinov, & Tenenbaum, 2015)

Strokes

Parts

Characters

Samples from the 
Omniglot dataset

learning (4, 14–16), fitting a more complicated
model requires more data, not less, in order to
achieve some measure of good generalization,
usually the difference in performance between
new and old examples. Nonetheless, people seem
to navigate this trade-off with remarkable agil-
ity, learning rich concepts that generalize well
from sparse data.
This paper introduces the Bayesian program

learning (BPL) framework, capable of learning
a large class of visual concepts from just a single
example and generalizing in ways that are mostly
indistinguishable from people. Concepts are rep-
resented as simple probabilistic programs—that
is, probabilistic generative models expressed as
structured procedures in an abstract description
language (17, 18). Our framework brings together
three key ideas—compositionality, causality, and
learning to learn—that have been separately influ-
ential in cognitive science and machine learning
over the past several decades (19–22). As pro-
grams, rich concepts can be built “composition-
ally” from simpler primitives. Their probabilistic
semantics handle noise and support creative
generalizations in a procedural form that (unlike
other probabilistic models) naturally captures
the abstract “causal” structure of the real-world
processes that produce examples of a category.
Learning proceeds by constructing programs that
best explain the observations under a Bayesian
criterion, and themodel “learns to learn” (23, 24)
by developing hierarchical priors that allow pre-
vious experience with related concepts to ease
learning of new concepts (25, 26). These priors
represent a learned inductive bias (27) that ab-
stracts the key regularities and dimensions of
variation holding across both types of concepts
and across instances (or tokens) of a concept in a
given domain. In short, BPL can construct new
programs by reusing the pieces of existing ones,
capturing the causal and compositional proper-

ties of real-world generative processes operating
on multiple scales.
In addition to developing the approach sketched

above, we directly compared people, BPL, and
other computational approaches on a set of five
challenging concept learning tasks (Fig. 1B). The
tasks use simple visual concepts fromOmniglot,
a data set we collected of multiple examples of
1623 handwritten characters from 50 writing
systems (Fig. 2) (see acknowledgments). Both im-
ages and pen strokes were collected (see below) as
detailed in section S1 of the online supplementary
materials. Handwritten characters are well suited
for comparing human andmachine learning on a
relatively even footing: They are both cognitively
natural and often used as a benchmark for com-
paring learning algorithms. Whereas machine
learning algorithms are typically evaluated after
hundreds or thousands of training examples per
class (5), we evaluated the tasks of classification,
parsing (Fig. 1B, iii), and generation (Fig. 1B, ii) of
new examples in theirmost challenging form: after
just one example of a new concept. We also in-
vestigatedmore creative tasks that asked people and
computational models to generate new concepts
(Fig. 1B, iv). BPL was compared with three deep
learning models, a classic pattern recognition
algorithm, and various lesioned versions of the
model—a breadth of comparisons that serve to
isolate the role of each modeling ingredient (see
section S4 for descriptions of alternative models).
We compare with two varieties of deep convo-
lutional networks (28), representative of the cur-
rent leading approaches to object recognition (7),
and a hierarchical deep (HD) model (29), a prob-
abilistic model needed for our more generative
tasks and specialized for one-shot learning.

Bayesian Program Learning

The BPL approach learns simple stochastic pro-
grams to represent concepts, building them com-

positionally from parts (Fig. 3A, iii), subparts
(Fig. 3A, ii), and spatial relations (Fig. 3A, iv).
BPL defines a generative model that can sam-
ple new types of concepts (an “A,” “B,” etc.) by
combining parts and subparts in new ways.
Each new type is also represented as a genera-
tivemodel, and this lower-level generativemodel
produces new examples (or tokens) of the con-
cept (Fig. 3A, v), making BPL a generative model
for generative models. The final step renders
the token-level variables in the format of the raw
data (Fig. 3A, vi). The joint distribution on types
y, a set of M tokens of that type q(1), . . ., q(M),
and the corresponding binary images I (1), . . ., I (M)

factors as

Pðy; qð1Þ;…; qðMÞ; I ð1Þ;…; I ðMÞÞ

¼ PðyÞ
M

∏
m¼1

PðI ðmÞjqðmÞÞPðqðmÞjyÞ ð1Þ

The generative process for types P(y) and
tokens P(q(m)|y) are described by the pseudocode
in Fig. 3B and detailed along with the image
model P(I (m)|q(m)) in section S2. Source code is
available online (see acknowledgments). The
model learns to learn by fitting each condition-
al distribution to a background set of characters
from30 alphabets, using both the image and the
stroke data, and this image set was also used to
pretrain the alternative deep learning models.
Neither the production data nor any alphabets
from this set are used in the subsequent evalu-
ation tasks, which provide the models with only
raw images of novel characters.
Handwritten character types y are an abstract

schemaof parts, subparts, and relations.Reflecting
the causal structure of the handwriting process,
character parts Si are strokes initiated by pres-
sing the pendown and terminated by lifting it up
(Fig. 3A, iii), and subparts si1, ..., sini

are more
primitivemovements separated by brief pauses of

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1333

Fig. 2. Simple visual concepts for comparing human and machine learning. 525 (out of 1623) character concepts, shown with one example each.

RESEARCH | RESEARCH ARTICLES

Examples of  Probabilistic Programming (i)
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LiteralListener = function(utterance) {  
    return worlds consistent with [[utterance]]
}

Speaker = function(world) { 
    return utterances proportional to probability  
    that LiteralListener(utterance) == world
}

PragmaticListener = function(utterance) {  
    return worlds proportional to probability 
    that Speaker(world) == utterance
}

Pragmatic understanding in the Rational Speech Acts model (Goodman & Frank, 2016)

Frank & Goodman 2012 

Goodman & Stuhlmuller, 2013 


Goodman & Frank, 2016

Figure 1: Application of RSA-style reasoning to a signaling game (shown by the three faces
along the bottom). Agents are depicted as reasoning recursively about one another’s beliefs:
listener L reasons about an internal representation of a speaker S, who in turn is modeled as
reasoning about a simplified literal listener, Lit. Boxes around targets in the reference game
denote interpretations available to a particular agent.

Connections to other theoretical approaches and aspects of language then be-
come straightforward. For instance, by modifying the speaker’s utility function,
we can model the notion of topic-relevant information, which connects to lin-
guistic ideas about the “question under discussion” [68]. As a second example,
RSA can be combined with the noisy channel approach to language comprehen-
sion [54], in order to explain the communicative use of sentence fragments and
prosodic stress [7].

In sum, RSA models replace Grice’s maxims with a single, utility-theoretic
version of the cooperative principle [27]. This formulation is based on utilities
that can reflect the communicative and social priorities of a complex, real-world
agent.

5

Speaker 
S

Pragmatic
Listener L

Literal
Listener Lit

Examples of  Probabilistic Programming (ii)
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• Stochastic programs => Model different sources of uncertainty

• Lake et al: Motor variance 

• Rational Speech Acts: Uncertainty in semantics and speaker goals


• More generally, uncertainty can be:

• (i) incomplete knowledge 

• About the world and others' unobservable mental states; noisy 

sensor data

• (ii) incomplete theory

• (iii) inherent randomness in the generative process. 


• Affective Computing:

• Emotions require inference about latent mental states

• Individual differences not yet modelled by scientists

• Inherent randomness

Features of  Probabilistic Programs (i)
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Ong, Soh, Zaki, & Goodman, in press



• Modularity and compositionality

• Abstract processes into "modules", re-use modules

• Build up complexity

• Examples: 


• Lake et al: Hierarchy of strokes -> sub-parts -> parts -> characters

• Rational Speech Acts: Nested programs for social reasoning  

(X thinking about Y thinking about Z)

• Affective Computing:


• Separate and compose different components

• Structured reasoning

• Goal-directed actions [as in POMDPs]


• e.g., choosing action to maximise Bob's happiness

• Emotion + Mental States + Norms + ...


• Becoming easier to implement

• Deep PPL libraries
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Features of  Probabilistic Programs (ii)

Ong, Soh, Zaki, & Goodman, in press



• Modelling: 

• Writing down a generative model 

as a probabilistic program

• From Theory

• Has parameters to be learnt


• Inference: 

• Learning parameters by 

conditioning on data

• Find (or approximate)  

P(parameters | data)

General Recipe

Model

Inference

Just add 
data

Psychological 
Theory

Specific 
Application 

Requirements

Handled by PPL

“Human 
parameters”



• Stochastic functions:
# create a normal distribution object
normal = pyro.distributions.Normal(0, 1) 
# draw a sample from N(0,1)
x = pyro.sample("my_sample", normal)

https://pyro.ai/examples/intro_part_i.html

https://probmods.org

Stochastic primitives in Pyro (i)
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https://pyro.ai/examples/intro_part_i.html
https://probmods.org


https://pyro.ai/examples/intro_part_i.html

https://probmods.org

• Compositionality and Recursion
# geometric = distribution over number of failures 
before the first success
def geometric(probSuccess, t=0):
    x = pyro.sample("x_{}".format(t),  
             pyro.distributions.Bernoulli(probSuccess))
    if x.item() == 1:
        return 0
    else:
        return 1 + geometric(probSuccess, t+1)

Stochastic primitives in Pyro (ii)
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• Non-deterministic control flow
def leftOrRight(p):
    coinFlip = pyro.sample(pyro.distributions.Bernoulli(p))
    if coinFlip.item() == 1:
        ... # do something: go left
    else:
        ... # do something else: go right

Stochastic primitives in Pyro (iii)
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https://pyro.ai/examples/intro_part_i.html

https://probmods.org

Play aggressively Play cooperatively

Stop recursing Recurse about partner

Play randomly

Some parts of the code may never get run!

https://pyro.ai/examples/intro_part_i.html
https://probmods.org


Inference as conditioned sampling
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https://pyro.ai/examples/intro_part_ii.html

https://pyro.ai/examples/csis.html

weight | guess ~ N(guess, 1)

measurement | weight ~ N(weight, 0.75)

a priori guess = density * volume estimate

9.5!
def scale(guess):
    weight = pyro.sample("weight", dist.Normal(guess, 1.0))
    return pyro.sample("measurement", dist.Normal(weight, 0.75))

conditioned_scale = pyro.condition(scale, data={"measurement": 9.5})

Weight??

1)

2) Noisy measurement of weight

best_guess = 8.5 # let's say
# use importance sampling to infer the posterior
posterior = pyro.infer.Importance(conditioned_scale, 
               num_samples=1000).run(best_guess)

# sample from the marginal and plot
marginal = pyro.infer.EmpiricalMarginal(posterior, "weight")
samples = [marginal().detach() for _ in range(1000)]
plt.hist(samples)

## The true posterior, in this case for these values, can be analytically 
solved: N(9.14, 0.6). See links below.

https://pyro.ai/examples/intro_part_ii.html
https://pyro.ai/examples/csis.html


Variational Inference
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• We define a "Closeness" metric: the Kullback-Leibler Divergence 
between q and p, 


• Want to choose q(z) to minimise the KL:  
 
 

• However, this is still intractable because the KL still contains p(z|x)

p(z|x)

q(z)

q*(z) = arg min KL (q(z) | |p(z |x))

KL (q(z) | |p(z |x)) ≡ "[log q(z) − log p(z |x)]

Don't know the true posterior p(z|x)

Approximate by some ("nice") q(z) that is "close" to p(z|x)



Variational Inference
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ELBO(q)

Don't know the true posterior p(z|x)

Approximate by some ("nice") q(z) that is "close" to p(z|x)

• But, some algebra shows:

log p(x) = KL (q(z) | |p(z |x)) + " [log p(x, z) − log q(z)]

p(z|x)

q(z)

Evidence Lower BOund
≥ 0

• Thus, we can maximise the ELBO as a proxy for maximising log p(x)!



Variational Inference
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• Variational Inference replaces the (computationally-intractable) 
problem of inference in a probabilistic model: Solve p(x)


• With a proxy (and computationally-cheaper) optimisation problem:  
Maximize ELBO (also called the variational objective).


• This is the key idea behind recent deep generative models, 
especially the Variational Autoencoder (VAE; Kingma & Welling, 
2014)



https://pyro.ai/examples/svi_part_i.html

def model(...):
    ... 
    pyro.sample("z", ...)

# "q(z)", e.g. assume Normal with variational parameters mu, sigma
def guide(...): 
    ...
    mu = pyro.param("mu", torch.tensor(0.0))
    sigma = pyro.param("sigma", torch.tensor(1.0),  
                                constraint=constraints.positive)
    pyro.sample("z", dist.Normal(mu, sigma))

# stochastic variational inference
svi = SVI(model, guide, optimizer, loss_fn) 

# abstracted away from model definition
for step in range(num_steps):
    svi.step(data)

Variational Inference in Pyro
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"model"

"guide"



Worked examples in affective computing

Breaktime!

Tutorial website: https://desmond-ong.github.io/pplAffComp/

https://desmond-ong.github.io/pplAffComp/


(Ong, Zaki, & Goodman, 2015)

My Motivating Example

Outcome

Emotion

Expression

Appraisal Theory! 
(Probabilistic 

Model)

Learn it! 
(Deep 

Learning)



evidence for a ‘‘positive-valence-dominance’’ is because positive
cues tend to have higher reliability. This result implies that—at
least in the context of our task—participants tend to be more cer-
tain when making emotion attributions to agents given positive,
as compared to negative, cues.

In sum, the results from Experiment 3 showed that the Bayesian
model best predicts participants’ judgments of emotions in
multiple-cue scenarios. In addition, this quantitative paradigm
allowed us to examine participants’ emotion attributions in incon-
gruent cue combinations, and uncovered evidence for a different
type of dominance: in our paradigm, positively-valenced cues have
greater reliability and tend to dominate negatively-valenced cues.
However, we do not want the take home message to be that ‘‘posi
tive-valence-dominance’’ is a better rule than face or context dom-
inance to resolve conflicts; in fact, this is antithetical to the spirit of

the model. The Bayesian model makes one simple assumption: that
observers weigh cues according to the cues’ reliability. In this gam-
bling paradigm, positive cues have higher reliability, but we do not
want to generalize that positive cues in other contexts are more
reliable as well. The Bayesian model accounted for this valence
effect even without an explicit assumption, further suggesting that
a rational approach to emotional cue integration is well able to
capture these intricacies in affective cognition.

3.2. Experiment 4: Cue integration from outcomes and utterances

Experiment 3 examined combinations of facial expressions and
situation outcomes. In Experiment 4, we show that our model gen-
eralizes to other cues by examining combinations of verbal utter-
ances and situation outcomes.

Fig. 8. Face stimuli used in Experiment 1, created using FaceGen. The 12 faces in the top and middle rows vary in both valence and arousal. Top row: positively valenced faces,
increasing in valence and arousal from left to right. Middle row: negatively valenced faces, decreasing in valence and arousal from left to right. The top and middle right-most
faces are neutral valence high arousal and neutral valence low arousal, respectively. Bottom row: set of ‘‘ambiguous’’ faces made using combinations of FaceGen’s pre-defined
discrete emotions. From left to right: (Sad, Surprised, and Happy), (Angry, Happy, and Surprised), (Fear, Happy, and Disgust), (Disgust, Surprised, and Happy), (Sad, Happy,
Disgust and Fear), and (Sad, Happy, and Angry).

Fig. 9. (A) Screenshot from a trial from Experiment 3. Participants saw a character about to spin a wheel with three possible outcomes. (B) Each trial resulted in one of three
possibilities: the participant is shown (i) only the outcome, (ii) only the character’s facial expression, or (iii) both the outcome and the facial expression. Following this, the
participant is asked to judge the character’s emotions. (C) The single cue trials are used to model P(e|o) and P(e|f) respectively, which serve as single-cue only models. The
single-cue models are used to calculate the Bayesian cue-integration model. These three models are evaluated using empirical judgments made by participants in the joint-
cue trials.

152 D.C. Ong et al. / Cognition 143 (2015) 141–162
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P (emotion|outcome, face) / P (emotion|outcome)P (emotion|face)
P (emotion)

(Ong, Zaki, & Goodman, 2015)

Outcome Emotion Expression

Dataset

+ Participant rating of agent’s emotion



1 class AppraisalRegressionModel():
2   def condition(self, outcome, emotion):
3     appraisal = self.compute_appraisal(outcome)
//    # sample all the b parameters 
4     b1 = pyro.sample("b1", Normal(mu_1,sd_1)
      ...
5     prediction = sum([b_1, ...] * appraisal) 
6     pyro.sample("observed_emotion", 
        Normal(prediction, 1), obs = emotion)
7

Outcome

βiAppraisal

Emotion 
Ratings

μi

σi

N

evidence for a ‘‘positive-valence-dominance’’ is because positive
cues tend to have higher reliability. This result implies that—at
least in the context of our task—participants tend to be more cer-
tain when making emotion attributions to agents given positive,
as compared to negative, cues.

In sum, the results from Experiment 3 showed that the Bayesian
model best predicts participants’ judgments of emotions in
multiple-cue scenarios. In addition, this quantitative paradigm
allowed us to examine participants’ emotion attributions in incon-
gruent cue combinations, and uncovered evidence for a different
type of dominance: in our paradigm, positively-valenced cues have
greater reliability and tend to dominate negatively-valenced cues.
However, we do not want the take home message to be that ‘‘posi
tive-valence-dominance’’ is a better rule than face or context dom-
inance to resolve conflicts; in fact, this is antithetical to the spirit of

the model. The Bayesian model makes one simple assumption: that
observers weigh cues according to the cues’ reliability. In this gam-
bling paradigm, positive cues have higher reliability, but we do not
want to generalize that positive cues in other contexts are more
reliable as well. The Bayesian model accounted for this valence
effect even without an explicit assumption, further suggesting that
a rational approach to emotional cue integration is well able to
capture these intricacies in affective cognition.

3.2. Experiment 4: Cue integration from outcomes and utterances

Experiment 3 examined combinations of facial expressions and
situation outcomes. In Experiment 4, we show that our model gen-
eralizes to other cues by examining combinations of verbal utter-
ances and situation outcomes.

Fig. 8. Face stimuli used in Experiment 1, created using FaceGen. The 12 faces in the top and middle rows vary in both valence and arousal. Top row: positively valenced faces,
increasing in valence and arousal from left to right. Middle row: negatively valenced faces, decreasing in valence and arousal from left to right. The top and middle right-most
faces are neutral valence high arousal and neutral valence low arousal, respectively. Bottom row: set of ‘‘ambiguous’’ faces made using combinations of FaceGen’s pre-defined
discrete emotions. From left to right: (Sad, Surprised, and Happy), (Angry, Happy, and Surprised), (Fear, Happy, and Disgust), (Disgust, Surprised, and Happy), (Sad, Happy,
Disgust and Fear), and (Sad, Happy, and Angry).

Fig. 9. (A) Screenshot from a trial from Experiment 3. Participants saw a character about to spin a wheel with three possible outcomes. (B) Each trial resulted in one of three
possibilities: the participant is shown (i) only the outcome, (ii) only the character’s facial expression, or (iii) both the outcome and the facial expression. Following this, the
participant is asked to judge the character’s emotions. (C) The single cue trials are used to model P(e|o) and P(e|f) respectively, which serve as single-cue only models. The
single-cue models are used to calculate the Bayesian cue-integration model. These three models are evaluated using empirical judgments made by participants in the joint-
cue trials.
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̤ Incorporating (an instance of) appraisal theory  
       (abstracted into a compute_appraisal() function)

Example 1: Modelling Appraisals  
[via a (Bayesian) Regression]



Example 2: Representing/generating faces

%

N

Facial 
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z
1 class VAE():
2   def condition(self, image):
//    # sample z given priors
3     z = pyro.sample("z",  
             Normal(prior_location, prior_scale))
//    # generate face from z, conditioned on observed image
4     loc = self.Face_Decoder(z)           
5     pyro.sample("face", dist.Bernoulli(loc), obs=image)
6

̤ Learn from high-dimensional data

        (abstracted into a decoder() function, which could be a neural network)

Input

Reconstructions



1 class SemiSupervisedVAE():
2   def condition(self, outcome, emotion, image):
//    # generate emotion from outcome, 
        conditioned on observed data
3     prediction_mean = self.outcomes_to_emotions(outcomes)     
4     emo = pyro.sample("emo", Normal(prediction_mean, 1), 
                               obs=emotion)
//    # sample z given priors
5     z = pyro.sample("z",  
             Normal(prior_location, prior_scale))
//    # generate face using emotion and z, 
        conditioned on observed image
6     zEmo = torch.cat((z, emo), 1) # concatenate
7     loc = self.zEmoToFace_Decoder(zEmo)           
8     pyro.sample("face", dist.Bernoulli(loc),  
                          obs=image)
9
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evidence for a ‘‘positive-valence-dominance’’ is because positive
cues tend to have higher reliability. This result implies that—at
least in the context of our task—participants tend to be more cer-
tain when making emotion attributions to agents given positive,
as compared to negative, cues.

In sum, the results from Experiment 3 showed that the Bayesian
model best predicts participants’ judgments of emotions in
multiple-cue scenarios. In addition, this quantitative paradigm
allowed us to examine participants’ emotion attributions in incon-
gruent cue combinations, and uncovered evidence for a different
type of dominance: in our paradigm, positively-valenced cues have
greater reliability and tend to dominate negatively-valenced cues.
However, we do not want the take home message to be that ‘‘posi
tive-valence-dominance’’ is a better rule than face or context dom-
inance to resolve conflicts; in fact, this is antithetical to the spirit of

the model. The Bayesian model makes one simple assumption: that
observers weigh cues according to the cues’ reliability. In this gam-
bling paradigm, positive cues have higher reliability, but we do not
want to generalize that positive cues in other contexts are more
reliable as well. The Bayesian model accounted for this valence
effect even without an explicit assumption, further suggesting that
a rational approach to emotional cue integration is well able to
capture these intricacies in affective cognition.

3.2. Experiment 4: Cue integration from outcomes and utterances

Experiment 3 examined combinations of facial expressions and
situation outcomes. In Experiment 4, we show that our model gen-
eralizes to other cues by examining combinations of verbal utter-
ances and situation outcomes.

Fig. 8. Face stimuli used in Experiment 1, created using FaceGen. The 12 faces in the top and middle rows vary in both valence and arousal. Top row: positively valenced faces,
increasing in valence and arousal from left to right. Middle row: negatively valenced faces, decreasing in valence and arousal from left to right. The top and middle right-most
faces are neutral valence high arousal and neutral valence low arousal, respectively. Bottom row: set of ‘‘ambiguous’’ faces made using combinations of FaceGen’s pre-defined
discrete emotions. From left to right: (Sad, Surprised, and Happy), (Angry, Happy, and Surprised), (Fear, Happy, and Disgust), (Disgust, Surprised, and Happy), (Sad, Happy,
Disgust and Fear), and (Sad, Happy, and Angry).

Fig. 9. (A) Screenshot from a trial from Experiment 3. Participants saw a character about to spin a wheel with three possible outcomes. (B) Each trial resulted in one of three
possibilities: the participant is shown (i) only the outcome, (ii) only the character’s facial expression, or (iii) both the outcome and the facial expression. Following this, the
participant is asked to judge the character’s emotions. (C) The single cue trials are used to model P(e|o) and P(e|f) respectively, which serve as single-cue only models. The
single-cue models are used to calculate the Bayesian cue-integration model. These three models are evaluated using empirical judgments made by participants in the joint-
cue trials.
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̤ Learning emotion information in faces

Example 3: Modelling emotion  
recognition from faces 



1 class MultimodalVAE():
2   def condition(self, outcome, emotion, image):
//    # generate a new emotion from outcome
3     prediction_mean = self.outcomes_to_affect(outcome)     
//    # sample affect given priors
4     affect = pyro.sample("affect", Normal(prediction_mean, 1))
//    # generate the facial expression, 
        condition on the observed data
5     face_mean = self.affectToFace_Decoder(affect)
6     face = pyro.sample("face", Bernoulli(face_mean), obs=image)
//    # generate the outcome ratings, 
        condition on the observed data
7     emo_mean = self.affectToRating_Decoder(affect)
8     emo = pyro.sample("emo", Normal(emo_mean, 1), obs=emotion)
9      

Outcome

Appraisal

Emotion 
Ratings Facial 

Expressions

Affect

̤ Learn a latent “affect” variable

Example 4: Learning the latent affect space



Summary

• Combining theory-based and data-driven approaches.


• Abstraction: PPLs abstract away inference, allowing modellers to focus 
on model building.


• (Deep) PPLs combine the benefits of probabilistic approaches: 

• Encode domain-knowledge

• Model different sources of uncertainty


• With the benefits of deep learning:

• Optimized approximate-inference algorithms e.g. variational inference

• Embed parts that are best learnt via deep learning ("perceptual" tasks)


• And the benefits of programming languages:

• Modularity: Test different theories (of emotion) by substituting out modules

• Compositionality: build up more complex reasoning



Reference paper:  
Ong, D. C., Soh, H., Zaki, J., & Goodman, N. D. (in press). Applying Probabilistic 
Programming to Affective Computing. IEEE Transactions on Affective Computing 
https://arxiv.org/abs/1903.06445

Materials/Code: https://desmond-ong.github.io/pplAffComp/
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