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Humans skillfully reason about others’ emotions, a phenomenon we term affective cognition. Despite its
importance, few formal, quantitative theories have described the mechanisms supporting this phe-
nomenon. We propose that affective cognition involves applying domain-general reasoning processes
to domain-specific content knowledge. Observers’ knowledge about emotions is represented in rich
and coherent lay theories, which comprise consistent relationships between situations, emotions, and
behaviors. Observers utilize this knowledge in deciphering social agents’ behavior and signals (e.g., facial
expressions), in a manner similar to rational inference in other domains. We construct a computational
model of a lay theory of emotion, drawing on tools from Bayesian statistics, and test this model across
four experiments in which observers drew inferences about others’ emotions in a simple gambling para-
digm. This work makes two main contributions. First, the model accurately captures observers’ flexible
but consistent reasoning about the ways that events and others’ emotional responses to those events
relate to each other. Second, our work models the problem of emotional cue integration—reasoning about
others’ emotion from multiple emotional cues—as rational inference via Bayes’ rule, and we show that
this model tightly tracks human observers’ empirical judgments. Our results reveal a deep structural rela-
tionship between affective cognition and other forms of inference, and suggest wide-ranging applications
to basic psychological theory and psychiatry.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

It is easy to predict that people generally react positively to
some events (winning the lottery) and negatively to others (losing
their job). Conversely, one can infer, upon encountering a crying
friend, that it is more likely he has just experienced a negative,
not positive, event. These inferences are examples of reasoning
about another’s emotions: a vital and nearly ubiquitous human
skill. This ability to reason about emotions supports countless
social behaviors, from maintaining healthy relationships to schem-
ing for political power. Although it is possible that some features of
emotional life carries on with minimal influence from cognition,
reasoning about others’ emotions is clearly an aspect of cognition.
We propose terming this phenomenon affective cognition—the col-
lection of cognitive processes that involve reasoning about emotion.

For decades, scientists have examined how people manage to
make complex and accurate attributions about others’ psychologi-
cal states (e.g., Gilbert, 1998; Tomasello, Carpenter, Call, Behne, &
Moll, 2005; Zaki & Ochsner, 2011). Much of this work converges
on the idea that individuals have lay theories about how others
react to the world around them (Flavell, 1999; Gopnik &
Wellman, 1992; Heider, 1958; Leslie, Friedman, & German, 2004;
Pinker, 1999). Lay theories—sometimes called intuitive theories
or folk theories—comprise structured knowledge about the world
(Gopnik & Meltzoff, 1997; Murphy & Medin, 1985; Wellman &
Gelman, 1992). They provide an abstract framework for reasoning,
and enable both explanations of past occurrences and predictions
of future events. In that sense, lay theories are similar to scientific
theories—both types of theories are coherent descriptions of how
the world works. Just as a scientist uses a scientific theory to
describe the world, a lay observer uses a lay theory to make sense
of the world. For instance, people often conclude that if Sally was in
another room and did not see Andy switch her ball from the basket
to the box, then Sally would return to the room thinking that her
ball was still in the basket: Sally holds a false belief, where her
beliefs about the situation differs from reality (Baron-Cohen,
Leslie, & Frith, 1985). In existing models, this understanding of
others’ internal states is understood as a theory that can be used
flexibly and consistently to reason about other minds. In this paper,
we propose a model of how people likewise reason about others’
emotions using structured lay theories that allow complex
inferences.
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Within the realm of social cognition, lay theories comprise
knowledge about how people’s behavior and mental states relate
to each other, and allow observers to reason about invisible but
important factors such as others’ personalities and traits (Chiu,
Hong, & Dweck, 1997; Heider, 1958; Jones & Nisbett, 1971; Ross,
1977; Ross & Nisbett, 1991), beliefs and attitudes (Kelley &
Michela, 1980), and intentions (Jones & Davis, 1965; Kelley,
1973; Malle & Knobe, 1997). Crucially, lay theories allow social
inference to be described by more general principles of reasoning.
For example, Kelley (1973)’s Covariational Principle describes how
observers use statistical co-variations in observed behavior to
determine whether a person’s behavior reflects a feature of that
person (e.g., their preferences or personality) or a feature of the sit-
uation in which they find themselves. There are many similar
instances of lay-theory based social cognition: Fig. 1 lists just sev-
eral such examples, such as how lay theories of personality (e.g.,
Chiu et al., 1997), race (e.g., Jayaratne et al., 2006), and ‘‘theories
of mind’’ (e.g., Gopnik & Wellman, 1992) inform judgments and
inferences—not necessarily made consciously—about traits and
mental states. Although lay theories in different domains contain
vastly different domain-specific content knowledge, the same com-
mon principles of reasoning—for example, statistical co-variation,
deduction, and induction—are domain-general, and can be applied
to these lay theories to enable social cognitive capabilities such
as inferences about traits or mental states.

Lay theories can be formalized using Bayesian statistics using
ideal observer models (Geisler, 2003). This approach has been used
successfully to model a wide range of phenomena in vision, mem-
ory, decision-making (Geisler, 1989; Liu, Knill, & Kersten, 1995;
Shiffrin & Steyvers, 1997; Weiss, Simoncelli, & Adelson, 2002),
and, more recently, social cognition (e.g., Baker, Saxe, &
Tenenbaum, 2009). An ideal observer analysis describes the opti-
mal conclusions an observer would make given (i) the observed
evidence and (ii) the observer’s assumptions about the world.
Ideal observer models describe reasoning without making claims
as to the mechanism or process by which human observers draw
these conclusions (cf. Marr, 1982), and provide precise, quantita-
tive hypotheses through which to explore human cognition.

We propose that affective cognition, too, can be understood as
reasoning with a lay theory: that is, affective cognition comprises
domain-general cognitive processes applied to domain-specific
knowledge about emotions (Fig. 1). Domain-specific knowledge
comprises the observers’ lay theory of emotion, and includes, for
example, beliefs about what emotions are, how they are caused,
and how people behave in response to emotions. We propose that
this complex knowledge can be captured in a causal model, and
Fig. 1. Lay theories within social cognition comprise domain-specific knowledge about b
apply domain-general reasoning processes to these lay theories. In an analogous fashio
specific knowledge in a lay theory of emotions.
that observers use domain-general reasoning and inference pro-
cesses to draw conclusions from this knowledge, similar to those
used in perception and other domains. We make these ideas pre-
cise below by constructing an ideal observer model of emotional
reasoning: we describing the domain-specific knowledge in a sta-
tistical causal model, and the domain-general reasoning as an
application of Bayesian inference.

1.1. Attributing emotional reactions

How does an observer infer that agents (the targets of affective
cognition) who spill a cup of coffee, miss the bus, or fall off a bicy-
cle, likely feel similar (negative) emotions? One problem that any
model of affective cognition must deal with is the combinatorial
explosion of outcomes and emotional states that people can expe-
rience. It would be both inefficient and impractical for observers to
store or retrieve knowledge about the likely affective consequences
of every possible situation. We hypothesize that people circumvent
this complexity by evaluating situations based on a smaller num-
ber of ‘‘active psychological ingredients’’ those situations contain.
For instance, many emotion-inducing situations share key com-
mon features (e.g., the attainment or nonattainment of goals) that
consistently produce particular emotions (Barrett, Mesquita,
Ochsner, & Gross, 2007; Ellsworth & Scherer, 2003). An individual
in a situation can take advantage of this commonality by appraising
the situation along a small number of relevant appraisal dimen-
sions: that is, reducing a situation to a low-dimensional set of
emotion-relevant features (Ortony, Clore, & Collins, 1988;
Schachter & Singer, 1962; Scherer, Schorr, & Johnstone, 2001;
Smith & Ellsworth, 1985; Smith & Lazarus, 1993).

We propose that observers similarly reduce others’ experience
to a small number of emotionally relevant features when engaging
in affective cognition. The examples above—spilling coffee, missing
the bus, and falling off a bicycle—could all be associated, for
instance, with unexpectedly losing something (e.g. coffee, time,
and health). Note that the features relevant to the person’s actual
emotions (identified by appraisal theories) may not be identical
to the features used by the observer (which are part of the obser-
ver’s lay theory). The latter is our focus when studying affective
cognition. Thus, we will first elucidate the situation features rele-
vant for attributing emotion to another person. We operationalize
this in Experiment 1 by studying a simple family of scenarios—a
gambling game—and considering a variety of features such as
amount of money won, prediction error (the amount won relative
to the expected value of the wheel), and distance from a better or
worse outcome.
ehavior and mental states. Inferences about traits and beliefs occur when observers
n, we propose that affective cognition is domain-general reasoning over domain-
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1.2. Reasoning from emotional reactions

A lay theory should support multiple inferences that are coher-
ently related to each other: we can reason from a cause to its
effects, but also back from an effect to its cause, and so on. For
example, we can intuit that missing one’s bus makes one feel
sad, and we can also reason, with some uncertainty, that the
frowning person waiting forlornly at a bus stop might have just
missed their bus. If affective cognition derives from a lay theory,
then it should allow observers to both infer unseen emotions based
on events, and also to infer the type of event that a social target has
experienced based on that person’s emotions. In the framework of
statistical causal models, these two types of inference—from emo-
tions to outcomes and from outcomes to emotions—should be
related using the rules of probability. In Experiment 2, we explic-
itly test this proposal: do people reason flexibly back and forth
between emotions and the outcomes that cause them? Do forward
and reverse inferences cohere as predicted by Bayesian inference?
1.3. Integrating sources of emotional evidence

Domain-general reasoning should also explain more complex
affective cognition. For instance, observers often encounter multi-
ple cues about a person’s emotions: They might witness another
person’s situation, but also the expression on the person’s face,
their body posture, or what they said. Sometimes these cues even
conflict—for instance, when an Olympic athlete cries after winning
the gold medal. This seems to be a pair of cues that individually
suggest conflicting valence. A comprehensive theory of affective
cognition should address how observers translate this deluge of
different information types into an inference, a process we call
emotional cue integration (Zaki, 2013).

Prior work suggests two very different approaches that obser-
vers might take to emotional cue integration. On the one hand,
the facial dominance hypothesis holds that facial expressions uni-
versally broadcast information about emotion to external obser-
vers (Darwin, 1872; Ekman, Friesen, & Ellsworth, 1982; Smith,
Cottrell, Gosselin, & Schyns, 2005; Tomkins, 1962; for more exten-
sive reviews, see Matsumoto, Keltner, Shiota, O’Sullivan, & Frank,
2008; Russell, Bachorowski, & Fernández-Dols, 2003). This sug-
gests that observers should draw primarily on facial cues in deter-
mining social agents’ emotions (Buck, 1994; Nakamura, Buck, &
Kenny, 1990; Wallbott, 1988; Watson, 1972). On the other hand,
contextual cues often appear to drive affective cognition even
when paired with facial expressions. For instance, observers often
rely on written descriptions of a situation (Carroll & Russell, 1996;
Goodenough & Tinker, 1931) body postures (Aviezer, Trope, &
Todorov, 2012; Aviezer et al., 2008; Mondloch, 2012; Mondloch,
Horner, & Mian, 2013; Van den Stock, Righart, & de Gelder,
2007), background scenery (Barrett & Kensinger, 2010; Barrett,
Mesquita, & Gendron, 2011; Lindquist, Barrett, Bliss-Moreau, &
Russell, 2006), and cultural norms (Masuda et al., 2008) when
deciding how agents feel.

Of course, both facial expressions and contextual cues influence
affective cognition. It is also clear that neither type of cue ubiqui-
tously ‘‘wins out,’’ or dominates inferences about others’ emotions.
An affective cognition approach suggests that observers should
solve emotional cue integration using domain-general inference
processes. There are many other settings—such as binocular vision
(Knill, 2007) and multisensory perception (Alais & Burr, 2004;
Shams, Kamitani, & Shimojo, 2000; Welch & Warren, 1980)—that
require people to combine multiple cues into coherent representa-
tions. These ideal observer models assume that observers combine
cues in an optimal manner given their prior knowledge and uncer-
tainty. In such models, sensory cue integration is modeled as
Bayesian inference (for recent reviews, see de Gelder & Bertelson,
2003; Ernst & Bülthoff, 2004; Kersten, Mamassian, & Yuille, 2004).

Our framework yields an approach to emotional cue integration
that is analogous to cue integration in object perception: a rational
information integration process. Observers weigh available cues to
an agent’s emotion (e.g., the agent’s facial expression, or the con-
text the agent is in) and combine them using statistical principles
of Bayesian inference. This prediction naturally falls out of our
claim that affective cognition resembles other types of
theory-driven inference, with domain-specific content knowledge:
the lay theory of emotion describes the statistical and causal rela-
tions between emotion and each cue; joint reasoning over this
structure is described by domain-general inference processes.

We empirically test the predictions of this approach in
Experiments 3 and 4. We aim to both extend the scope of our lay
theory model and resolve the current debate in emotion perception
by predicting how different cues are weighted as observers make
inferences about emotion.
1.4. Overview

We first describe the components of our model and how it can
be used to compute inferences about others’ emotions. We formal-
ize this model in the language of Bayesian modeling (Goodman &
Tenenbaum, 2014; Goodman, Ullman, & Tenenbaum, 2011;
Griffiths, Kemp, & Tenenbaum, 2008). Specifically, we focus on
the ways that observers draw inferences about agents’ emotions
based on the situations and outcomes those agents experience. In
all our experiments, we restricted the types of situations that
agents experience to a simple gambling game. Although this para-
digm does not capture many nuances of everyday affective cogni-
tion, its simplicity allowed us to quantitatively manipulate features
of the situation and isolate situational features that best track
affective cognition.

Experiment 1 sheds light on the process of inferring an agent’s
emotions given a situation, identifying a set of emotion-relevant
situation features that observers rely on to understand others’
affect. Experiment 2 tests the flexibility of emotional lay theories,
by testing whether they also track observers’ reasoning about the
outcomes that agents’ likely encountered based on their emotions;
our model’s predictions tightly track human judgments.

We then expand the set of observable evidence that our model
considers, and describe how our model computes inferences from
multiple cues—emotional cue integration. Experiment 3 tests the
model against human judgments of emotions from both situation
outcomes and facial expressions; Experiment 4 replicates this with
situation outcomes and verbal utterances. In particular, we show
that the Bayesian model predicts human judgments accurately,
outperforming the baseline single cue dominance (e.g. facial or
context dominance) models. Together, the results support the
claim that reasoning about emotion represents a coherent set of
inferences over a lay theory, similar to reasoning in other domains
of psychology.

Finally, we describe some limitations of our model, motivate
future work, and discuss the implications of an affective cognition
approach for emotion theory, lay theories in other domains, and
real-world applications.
2. Exploring the flexible reasoning between outcomes and
emotions

Our model of a lay theory of emotion is shown schematically in
Fig. 2. An observer (i.e. the reasoner) uses this lay theory to reason
about an agent (i.e. the target of the reasoning). There are
emotion-eliciting situations in the world, and the outcomes of



Fig. 2. Model of a lay theory that an observer could use during affective cognition.
Using the notation of Bayesian networks, we represent variables as circles, and
causal relations from a causal variable to its effect as arrows. Shaded variables
represent unobservable variables. Although causal flows are unidirectional, as
indicated by the arrows, information can flow the other way, as when making
inferences about upstream causes from downstream outcomes. In this model,
observers believe that situation outcomes cause an agent to feel an emotion, which
then causes certain behavior such as speech, facial expressions, body language or
posture, and importantly, actions that potentially result in new outcomes and a
new emotion cycle. From the observable variables—which we call ‘‘cues’’—we can
infer the agent’s latent, or unobservable, emotion. Other mental states could be
added to this model. One such extension includes the agent’s motivational states or
goals, which would interact with the outcome of a situation to produce emotions;
such goals would also influence the actions taken.

1 Materials, data, and code can be found at: http://www.github.com/desmond-ong/
affCog
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these situations, interacting with other mental states such as goals,
cause an agent to feel emotions. The agent’s emotions in turn pro-
duce external cues including facial expressions, body language,
and speech, as well as further actions. All of these variables, except
mental states such as emotion and goals, are potentially observ-
able variables; in particular, emotion is a latent variable that is
unobservable because it is an internal state of the agent.

Each of these directed causal relationships can be represented
as a probability distribution. For example, we can write different
levels of happiness and anger given the outcome of winning the lot-
tery as P(happy|won lottery) and P(angry|won lottery). In our
model, we represent the relationship between general outcomes
o and emotions e as P(e|o). Similarly, the causal relationship
between an agent’s emotions and his resultant facial expressions
f can be written as P(f|e), and so forth.

As we discussed above, it would be impractical for observers to
store the affective consequences of every possible situation out-
come (i.e., P(e|o) for every possible outcome o). We hypothesize
that observers reduce the multitude of possible outcomes into a
low-dimensional set of emotion-relevant features via, for example,
appraisal processes (e.g., Ortony et al., 1988). One potentially
important outcome feature is value with respect to the agent’s
goals. Indeed, a key characteristic of emotion concepts, as com-
pared to non-emotion concepts, is their inherent relation to a psy-
chological value system (Osgood, Suci, & Tannenbaum, 1957), that
is, representations of events’ positive or negative affective valence
(Clore et al., 2001; Frijda, 1988). As economists and psychologists
have long known, people assess the value of events relative to their
expectations: winning $100 is exciting to the person who expected
$50 but disappointing to the person who expected $200 (Carver &
Scheier, 2004; Kahneman & Tversky, 1979). Deviations from an
individual’s expectation are commonly termed prediction errors,
and prediction errors in turn are robustly associated with the expe-
rience of positive and negative affect (e.g., Knutson, Taylor,
Kaufman, Peterson, & Glover, 2005). Responses to prediction errors
are not all equal, however; individuals tend to respond more
strongly to negative prediction errors, as compared to positive pre-
diction errors of equal magnitude, a property commonly referred
to as loss aversion (Kahneman & Tversky, 1984). These value com-
putations are basic and intuitively seem linked to emotion con-
cepts, and we propose that they form an integral part of
observers’ lay theory of emotion. Thus, we hypothesize that
reward, prediction error, and loss aversion constitute key outcome
features that observers will use to theorize about others’ emotions,
and facilitate affective cognition. Other, less ‘‘rational’’ features
likely also influence affective cognition. Here we consider one such
factor: the distance from a better (or worse) outcome, or how close
one came to achieving a better outcome. In Experiment 1 we
explore the situation features that parameterize P(e|o) in a simple
gambling scenario.

Although the lay theory we posit is composed of directed causal
relationships—signaled by arrows in Fig. 2—people can also draw
‘‘reverse inferences’’ about causes based on the effects they observe
(for instance, a wet front lawn offers evidence for the inference
that it has previously rained.). In addition to reasoning about emo-
tions e given outcomes o, observers can also draw inferences about
the posterior probability of different outcomes o having occurred,
given the emotion e. This posterior probability is written as
P(o|e) and is specified by Bayes’ Rule:

PðojeÞ ¼ PðejoÞPðoÞ
PðeÞ ð1Þ

where P(e) and P(o) represent the prior probabilities of emotion e
and outcome o occurring, respectively. By way of example, imagine
that you walk into your friend’s room and find her crying uncontrol-
lably; you want to find the outcome that made her sad—likely the o
with the highest P(o|sad)—so you start considering possible candi-
date outcomes using your knowledge of your friend. She is a consci-
entious and hardworking student, and so if she fails a class exam,
she would be sad, i.e., P(sad|fail exam) is high. But, you also recall
that she is no longer taking classes, and so the prior probability of
failing an exam is small, i.e., P(fail exam) is low. By combining those
two pieces of information, you can infer that your friend probably
did not fail an exam, i.e., P(fail exam|sad) is low, and so you can
move on and consider other possible outcomes. In Experiment 2
we consider whether people’s judgments from emotions to out-
comes are predicted by the model of P(e|o) identified in
Experiment 1 together with Bayes’ rule.

2.1. Experiment 1: Emotion from outcomes1

Our first goal is to understand how P(e|o) relates to the features
of a situation and outcome. We explore this in a simple gambling
domain (Fig. 3) where we can parametrically vary a variety of out-
come features, allowing us to understand the quantitative relation-
ship between potential features and attributed emotions.

2.1.1. Participants
We recruited one hundred participants through Amazon’s

Mechanical Turk and paid them for completing the experiment.
All experiments reported in this paper were conducted according
to guidelines approved by the Institutional Review Board at
Stanford University.

2.1.2. Procedures
Participants played the role of observers and watched charac-

ters play a simple gambling game. These characters each spun a
wheel and won an amount of money depending on where the
wheel landed (Fig. 3). On each trial, one character spun one wheel.
We pre-generated a total of 18 wheels. Each wheel comprised
three possible outcomes, all of which were non-negative. We sys-
tematically de-correlated the probabilities of the outcomes and the
values of the outcomes of each wheel, allowing for separate

http://www.github.com/desmond-ong/affCog
http://www.github.com/desmond-ong/affCog


Fig. 3. Sample screenshots from Experiment 1. Participants see a character spin a wheel that lands, in this case, on $60. Participants then attribute emotions to the character
on eight separate Likert scales.

3 Note that researchers model loss aversion as the difference between the
coefficient of PE when PE is negative and when PE is positive, often using a piecewise
function. It is often modeled using the piecewise equations: y = a PE, for PE > 0, and
y = b PE, for PE < 0. We chose to adopt a mathematically equivalent formulation using
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calculation of reward amount and expected value. We used a stan-
dard definition of expected value: the averaged reward that the
character expected to win. For each ‘‘wedge’’, or sector of the
wheel, we take the reward amount on that sector, and multiply
it with the notational probability—based on the size—of that sector.
The expected value is the sum of these products over all the sec-
tors. The final correlation of the amount won with the expected
value was 0.3. The 18 wheels with 3 outcomes each resulted in
(after discarding one to make a number that could be evenly
divided by total trials) 50 scenarios, where each scenario corre-
sponds to a particular outcome on a particular wheel. On each trial,
the experimental program selected the scenario (the particular
outcome to be won) randomly from the total set of 50 scenarios,
and not proportional to the sector size within a wheel.2 This was
a design choice to ensure that small sectors (with low notational
probability) were equally represented in the data. This fact was
not obvious to the participants, and we assume that participants
treated the wheel as being fairly spun. The exact position within
the sector where the spinner lands—for example, whether the spin-
ner lands in the center of the sector, or near the edge of the sector, as
in the example shown in Fig. 3—was a real number in the interval (0,
1) drawn from a uniform distribution.

Each participant completed 10 trials. On each trial, they saw a
stick figure character with a randomized male name (e.g. ‘‘Bob’’)
spin a wheel. The names of the characters were randomized on
every trial. After the result of the spin, participants had to rate
how the character feels, on a set of 9 point Likert scales. There were
eight different Likert scales for each of eight emotion adjectives:
happy, sad, angry, surprised, fearful, disgusted, content, and disap-
pointed. The first six were the classic ‘‘basic emotions’’ described
by Ekman and colleagues (e.g., Ekman et al., 1982). We added ‘‘con-
tent’’ and ‘‘disappointed’’ to capture emotion concepts related to
counterfactual comparisons with outcomes that could have, but
did not occur (Gilovich & Medvec, 1995; Sweeny & Vohs, 2012).
2 The alternative, which we did not do, would be to randomly choose a wheel with
all its possible outcomes from a set of all possible wheels, and then uniformly choose
where it lands; each sector would then be sampled proportional to its notational
probability.
2.1.3. Forward regression model
We expected that affective cognition should depend on specific

situation features—especially those related to value computation—
that often predict an agent’s emotions. As such, we chose several a
priori features based on previous work in decision theory as model
regressors to predict observers’ affective judgments. It is worth
reiterating here that our prediction is not that these features actu-
ally affect the ways that agents feel; that point has been made by
decades of economic and psychological research. Rather, our pre-
diction here is that observers spontaneously rely on these features
when inferring how others feel—in essence applying sophisticated
lay theories to affective cognition.

We predicted that reward, prediction error, and loss aversion
form key features of affective cognition. We operationalized these
as regressors representing the amount won by the agent in a trial
(‘‘win’’), the prediction error (‘‘PE’’; the difference between what
the agent won and the expected value of the wheel), and the abso-
lute value of the prediction error (‘‘|PE|’’), respectively. Using both
PE and |PE| in the same model allows the coefficient on PE to differ
when PE is positive and negative, modeling loss aversion.3

We additionally evaluated several other a priori plausible regres-
sors (none of which survived model selection below). People com-
pare their results with salient possible counterfactuals (e.g. what
they ‘‘could have’’ won; Medvec, Madey, & Gilovich, 1995). To exam-
ine whether observers weigh such comparisons during affective
cognition, we computed—for each gamble—a score representing
regret (the difference between how much the agent won and the
maximum he could have won4; Loomes & Sugden, 1982) and relief
(the difference between how much the agent won and the minimum
both PE and |PE| as regressors in the same model: y = c PE + d |PE| across all values of
PE. We can easily show that a = c + d, and b = c � d.

4 Note that this ‘game-theoretic’ definition of regret (over outcomes given a
specified choice) is slightly distinct from most psychological definitions that involve
regret over choices. We chose not to call this variable disappointment (usually
contrasted with regret), as that was one of the emotions we measured.
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he could have won). Finally, we drew on previous work on ‘‘luck’’ (e.g.
Teigen, 1996), where observers tend to attribute more ‘‘luck’’ to an
agent who won when the chances of winning were low, even after
controlling for expected payoffs. To model whether observers account
for this when attributing other emotions, we included a regressor to
account for the probability of winning, i.e., the size of the sector that
the wheel landed on. Since a probability is bounded in [0,1] and the
other regressors took on much larger domains of values (e.g. win var-
ied from 0 to 100), we used a logarithm to transform the probability to
make the values comparable to other regressors (‘‘logWinProb’’).

The final regressor we included was a ‘‘near-miss’’ term to
model agents’ affective reactions to outcomes as a function of their
distance from other outcomes. Such counterfactual reasoning often
affects emotion inference. For instance, people reliably judge
someone to feel worse after missing a flight by 5 min, as compared
to 30 min (Kahneman & Tversky, 1982). Near-misses ‘‘hurt’’ more
when the actual outcome is close (e.g., in time) to an alternative,
better outcome. In our paradigm, since outcomes are determined
by how much the wheel spins, ‘‘closeness’’ can be operationalized
in terms of the angular distance between (i) where the wheel
landed (the actual outcome; as defined by the pointer) and (ii)
the boundary between the actual outcome and the closest sector.
We defined a normalized distance, which ranged from 0 to 0.5,
with 0 being at the boundary edge, and 0.5 indicating the exact
center of the current sector. Near-misses have much greater
impact at smaller distances, so we took a reciprocal transform5

(1/x) to introduce a non-linearity that favors smaller distances.
Finally, we scaled this term by the difference in payment amounts
from the current sector to the next-nearest sector, to weigh the
near-miss distance by the difference in utility in the two payoffs.

In total, we tested seven outcome variables: win, PE, |PE|, regret,
relief, logWinProb and nearMiss. We fit mixed-models predicting each
emotion using these regressors as fixed effects, and added a random
intercept by subject. We performed model selection by conducting
backward stepwise regressions to choose the optimal subset of
regressors that predicted a majority of observers’ ratings of the
agents’ emotions. This was done using the step function in the R pack-
age lmerTest. Subsequently, we used the optimal subset of regressors
as fixed effects with the same random effect structure. Full details of
the model selection and results are given in Appendix A.
2.1.4. Results
Model selection (in Appendix A) revealed that participants’

emotion ratings were significantly predicted only by three of the
seven regressors we initially proposed: amount won, the prediction
error (PE), and the absolute value of the prediction error (|PE|) (see
also Section 3.3 for a re-analysis with more data). Crucially, PE and
|PE| account for significant variance in emotion ratings after
accounting for amount won. This suggests that affective cognition
is remarkably consistent with economic and psychological models
of subjective utility. In particular, emotion inferences exhibited
reference-dependence—tracking prediction error in addition to
amount won—and loss aversion—in that emotion inferences were
more strongly predicted by negative, as opposed to positive predic-
tion error. These features suggest that lay observers spontaneously
use key features of prospect theory (Kahneman & Tversky, 1979,
1984) in reasoning about others’ emotions: a remarkable connec-
tion between formal and everyday theorizing. It is worth noting
as well that the significant regressors for surprise followed a
slightly different pattern from the rest of the other emotions,
where the win probability, as well as regret and relief, seem just
as important as the amount won, PE, and |PE|.
5 We tried other non-linear transforms such as exponential and log transforms,
which all performed comparably.
The aforementioned analysis suggests that amount won, PE, and
|PE| are necessary to model emotion inferences in a gambling con-
text and suggest a low dimensional structure for the situation fea-
tures. Next, we explored the underlying dimensionality of
participants’ inferences about agents’ emotions via an a priori
planned Principal Component Analysis (PCA). Previous work on
judgments of facial and verbal emotions (e.g., Russell, 1980;
Schlosberg, 1954) and self-reported emotions (e.g., Kuppens,
Tuerlinckx, Russell, & Barrett, 2012; Watson & Tellegen, 1985) have
suggested a low-dimensional structure, and we planned this anal-
ysis to see if a similar low-dimensional structure might emerge in
attributed emotions in our paradigm.

The first principal component (PC) accounted for 59% of the vari-
ance in participants’ ratings along all 8 emotions, while the second
PC accounted for 16%; subsequent PCs individually explained less
than 10% of the variance. The first PC accounted for most of the vari-
ance in the emotion ratings, although the second PC accounted for a
far lower, but still noteworthy, amount of variance. Full details of
the PCA procedure and loading results are given in Appendix A.

Post-hoc exploratory analysis of the first two PCs revealed that
the first PC positively tracked happiness and contentment, while
negatively tracking all negative emotions; by contrast, the second
PC positively tracked the intensity of both positive and negative
emotions (Fig. 4A). Interestingly, this connects with classic con-
cepts of valence and arousal, respectively, which feature centrally
in emotion science6 (e.g., Kuppens et al., 2012; Russell, 1980;
Schlosberg, 1954). In particular, some theorists view emotional
valence as a crucial form of feedback to the agent: positively
valenced emotions like happiness signal a positive prediction
error—that the agent is doing better than expected—hence, posi-
tively reinforcing successful behavior. Conversely, negatively
valenced emotions could signal to the agent to change some behav-
ior to achieve a better outcome (e.g., Carver & Scheier, 2004; Ortony
et al., 1988). In line with this, we find that the first PC (‘‘valence’’) of
emotions attributed by the observer correlated strongly with the PE
of the situation (r = 0.737, 95% C.I. = [0.707; 0.764]). Additionally, we
find that the second PC (‘‘arousal’’) correlated with |PE| (r = 0.280
[0.222, 0.364]; Fig. 4B).

We started with a priori predictions for a low-dimensional sum-
mary of outcome features, and followed up with a post hoc dimen-
sionality reduction analysis of the emotion ratings. It is intriguing
that the low-dimensional value computations (e.g. PE, |PE|) are
intimately tied with the principal components of the emotion rat-
ings (‘‘valence’’ and ‘‘arousal’’). However, note that the second PC
(‘‘arousal’’) accounts for much less variance than the first PC (‘‘va-
lence’’). One possibility is that the paradigm we used is limited in
the range of emotions that it elicits in an agent, which restricts
the complexity of emotion inferences in this paradigm. A second
possibility is that emotional valence is the central feature of affec-
tive cognition, and valence would carry most of the variance in
emotion inferences across more complex scenarios. Although we
are not able to address the second possibility in this paper, there
is much theoretical evidence from affective science (e.g., Barrett
& Russell, 1999; Russell, 1980; Schlosberg, 1954) in favor of the
second possibility; future work is needed to explore this further.

Together, these findings provide two key insights into the struc-
ture of affective cognition: (i) lay theories of emotion are low
dimensional, consistent with affective science concepts of valence
and arousal, and (ii) these core dimensions of emotion inference
also track aspects of the situation and outcome that reflect value
computation parameters described by economic models such as
prospect theory. Although the specific structure of affective
6 We invite the reader to compare the striking similarity between our Fig. 4A with
similar valence-arousal figures in the literature, such as Fig. 1 from Russell (1980) and
Fig. 2A from Kuppens et al. (2012).



Fig. 4. (A) Participants’ emotion ratings projected onto the dimensions of the first two principal components (PCs), along with the loadings of the PCs on each of the eight
emotions. The loading of the PCs onto the eight emotions suggests a natural interpretation of the first two PCs as ‘‘valence’’ and ‘‘arousal’’ respectively. The labels for disgust
and anger are overlapping. (B) Participant’s emotion ratings projected onto the dimensions of the first two PCs, this time colored by the prediction error (PE = amount
won � expected value of wheel). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

7 Consider calculating the posteriors of the three possible outcomes given an
observed value of happiness, h: P(o1|h), P(o2|h), and P(o3|h), which are proportional
to [P(h|o1)P(o1)], [P(h|o2)P(o2)], and [P(h|o3)P(o3)] respectively. The sum of the latter
three quantities is simply the prior on emotion P(h). Thus, as long as proper
normalization of the probabilities is carried out (i.e. ensuring that the posteriors all
sum to 1), we do not need to explicitly calculate P(h) in our calculation of P(o|h). This
is true for the other emotions in the model.
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cognition likely varies depending on the complexity and details of
a given context, we believe that observers’ use of low-dimensional
‘‘active psychological ingredients’’ in drawing inferences consti-
tutes a core feature of affective cognition.

2.2. Experiment 2: Outcomes from emotions

Experiment 1 established the features that allow observers to
reason about agents’ emotions given a gamble outcome: represent-
ing P(e|o) in a simple linear model. In Experiment 2 (Fig. 5), we test
the hypothesis that participants’ lay theories are flexible enough to
also allow ‘‘backward’’ inferences about the situation outcome
based on emotions. These backward inferences are predicted from
the forward regression model by Bayes’ rule. To evaluate our mod-
el’s predictions, we show participants the emotions of characters
who have played the same game show—importantly, without
showing the eventual outcome—and elicit participants’ judgments
about the likely outcome. We then compare the empirical judg-
ments (in Experiment 2) to the posterior probabilities predicted
by the model (based on data from Experiment 1).

2.2.1. Participants
We recruited one hundred twenty-five participants via Amazon

Mechanical Turk. We excluded three participants because they
reported technical difficulties with the animation, resulting in a
final sample size of 122.

2.2.2. Stimuli
We generated graphical emotion profiles that ostensibly repre-

sented the emotions that the agent feels after each outcome
(Fig. 5B). These emotion profiles were shown on continuous slider
scales that corresponded to each individual emotion. For each of
the outcomes, we used the average emotion ratings given by par-
ticipants in Experiment 1 to generate the emotion profiles seen
by participants in Experiment 2. Specifically, for each outcome,
we drew eight emotion values from Gaussians with means and
standard deviations equal to the means and standard deviations
of the emotion ratings given by participants in response to that
outcome in Experiment 1. This was meant to provide naturalistic
emotion profiles for the participants in Experiment 2.
2.2.3. Procedures
Each participant completed 10 trials, randomly drawn from the

same 50 pre-generated scenarios used in Experiment 1. On each
trial, participants were shown a stick figure and the game wheel,
as before. This time, as the wheel spun, a gray square covered
the wheel, occluding the outcome (Fig. 5A). Participants were then
shown a graphical representation of the agent’s emotions after see-
ing the outcome (Fig. 5B). For instance, on a particular trial, a par-
ticipant might see three possible gamble outcomes of $25, $60, and
$100. Without being able to see where the wheel landed, they
might then be told that the agent who spun the wheel, following
its outcome, feels moderately happy (e.g., a slider at about a 6 on
a 9 point scale), not at all sad (e.g., another slider that shows
between a 1 and 2 on a 9 point scale), and so forth; see Fig. 5 for
an illustration. Participants were then asked to infer how likely it
was that each of the three possible outcomes had occurred. They
gave probability judgments on 9 point Likert scales. Hence, on each
trial, they gave three likelihood judgments, which corresponded to
each of the three possible outcomes.

2.2.4. Bayesian model details
In order to generate model-based predictions about observers’

‘‘reverse inference’’ about outcomes given emotions, the posterior
P(o|e), one needs three components: P(o), P(e), and P(e|o) (Eq.
(1)). The prior probabilities of the outcomes P(o) here are given
by the notational probability of each outcome on the wheel—i.e.
the relative size of each outcome—and are transparent to an obser-
ver in our paradigm. Larger sectors have higher probabilities of
that outcome occurring. One actually does not need to explicitly
calculate the prior probability of the emotion P(e) as long as we
properly normalize P(o|e).7

The crucial step lies in calculating the likelihood P(e|o). To cal-
culate P(e|o), we drew on the ‘‘forward reasoning’’ data collected in
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Fig. 5. Screenshots from Experiment 2. (A) Participants were shown a character that spins a wheel, but a gray square then occludes the outcome on the wheel. (B) Participants
then saw a graphical representation of the character’s emotions, and inferred separate probabilities for each of the three possible outcomes having occurred.
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Experiment 1. In particular, we leveraged Experiment 1’s regres-
sion model to calculate the extent to which observers would be
likely to infer different emotions of an agent based on each out-
come. To do so, we applied the variables identified as most relevant
to affective cognition in Experiment 1—win, PE, and |PE|—to predict
the emotions observers would assign to agents given the novel out-
comes of Experiment 2. For instance, in modeling happiness, this
approach produces the following equation for each wheel
outcome:

happy ¼ c0;happy þ c1;happywinþ c2;happyPEþ c3;happyjPEj þ ehappy ð2Þ

We employed similar regression equations to estimate P(e|o) for
the other seven emotions, where eemotion (with zero mean and stan-
dard deviation eemotion) represents the residual error terms of the
regressions. The coefficients ci;emotion are obtained numerically by fit-
ting the data from Experiment 1; the linear model is fit across all
participants and scenarios to obtain one set of coefficients per emo-
tion. For a new scenario with {win, PE, |PE|}, the likelihood of
observing a certain happy value h0 is simply the probability that h0

is drawn from the linear model. In other words, it is the probability
that the error

h0 � c0;happy þ c1;happywinþ c2;happyPEþ c3;happyjPEj ð3Þ

is drawn from the residual error distribution for ehappy.
The error distribution ehappy resulting from the above regression

captures intrinsic noise in the relation between outcomes and
emotions of the agent—uncertainty in the participant’s lay theory.
However, in addition to this noise, there are several other sources
of noise that may enter into participants’ judgments. First, partici-
pants may not take the graphical sliders as an accurate representa-
tion of the agent’s true emotions (and indeed we experimentally
generated these displays with a small amount of noise, as
described above). Secondly, participants might have some uncer-
tainty around reading the values from the slider. Thirdly, partici-
pants may also have some noise in the prior estimates they use
in each trial.

Instead of having multiple noise parameters to model these and
other external sources of noise, we instead modified the intrinsic
noise in the regression model. We added a likelihood smoothing
parameter f (zeta), which amplifies the intrinsic noise in the
regression model, such that the likelihood P(h0|o) is the probability
that h0 � c0;happy þ c1;happywinþ c2;happyPEþ c3;happyjPEj is drawn from

Nð0; ðfrhappyÞ2Þ, i.e. a normal distribution with mean 0 and standard
deviation frhappy.

Using Eq. (3) with the additional noise parameter, we can calcu-
late the likelihood of observing a value h0 as a result of an outcome
o, i.e. P(h0|o). We then calculate the joint likelihood of observing a
certain combination of emotions e0 for a particular outcome o as
the product of the individual likelihoods,

Pðe0joÞ ¼ Pðhappy0joÞPðsad0joÞ . . . Pðdiapp0joÞ ð4Þ

A note on Eq. (4): The only assumption we make is that the out-
come o is the only cause of the emotions, i.e., there are no other
hidden causes that might influence emotions. The individual emo-
tions are conditionally independent given the outcome (common
cause), and thus the joint likelihood is proportional to the product
of the individual emotion likelihoods.

Next, to calculate the posterior as specified in Eq. (1), we multi-
ply the joint likelihood P(e|o) with the prior probability of the out-
come o occurring, P(o), which is simply the size of the sector. We
performed this calculation for each individual outcome, before nor-
malizing to ensure the posterior probabilities P(o|e) for a particular
wheel sum to 1 (by dividing each probability by the sum of the
posteriors). The normalization removes the need to calculate P(e)
explicitly (see Footnote 3). The resulting model has only one free
noise parameter, otherwise being fixed by hypothesis and the
results of Experiment 1.

Up to this point, we had only used data from participants in
Experiment 1 to build the model. To verify the model, we collapsed
the empirical judgments that participants gave in Experiment 2 (an
independent group compared to participants in Experiment 1) for
each individual outcome. We then compared the model’s predicted
posterior probabilities for each outcome to the empirical
judgments.

We optimized the one free noise parameter f in the model to
minimize the root-mean-squared-error (RMSE) of the model
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residuals. We conducted a bootstrap with 5000 iterations to esti-
mate the noise parameter, RMSE, and the model correlation, as
well as their confidence interval.
Fig. 6. (A) Simple causal model. The solid arrow represents a causal relationship
2.2.5. Results
Model-based posterior probabilities tightly tracked the obser-

ver judgments in Experiment 2 (Fig. 6B). The optimal noise param-
eter was 3.2 [2.9, 3.6], which resulted in a model RMSE of 0.116
[0.112, 0.120]. The model’s predictions explained much of the vari-
ance in participants’ judgments, achieving a high correlation of
0.806 [0.792, 0.819]. For comparison, the bootstrapped split-half
correlation of the posterior probability estimates in Experiment 2
is 0.895 [0.866, 0.920]. The split-half correlation for the emotion
attributions in Experiment 1, the data that this model is fit to, is
0.938 [0.925, 0.950]. Together these two split-half reliabilities give
an upper-bound for model performance, and our model performs
very comparably to these upper limits.

This results suggest that a Bayesian framework can accurately
describe how observers make reverse inferences, P(o|e), given
how they make forward inferences, P(e|o). At a broader level,
the results imply that the causal knowledge in an observer’s lay
theory of emotion is abstract enough to use for multiple patterns
of reasoning. In the next section, we extend this work further by
considering inferences about emotion from multiple sources of
information.
(outcomes ‘‘cause’’ emotion; P(e|o) from Experiment 1), while the dashed arrow
represents an inference that can be made (P(o|e) from Experiment 2). (B)
Comparison of participants’ estimates of the posterior probability from
Experiment 2 with the predictions of the model built in Experiment 1. There is a
strong correlation of 0.806 [0.792, 0.819]. The dashed red line has intercept 0 and
slope 1 and is added for reference. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
3. Emotional cue integration

Thus far, we have examined how observers reason from out-
comes to emotions, and likewise use emotions to draw inferences
about the outcomes that caused those emotions. However, unlike
the observers in Experiment 2 who were given a graphical read
out of agents’ emotional states, real-world observers rarely have
direct access to others’ emotions. Instead observers are forced to
draw inferences about invisible but crucial emotional states based
on agents’ outward, observable cues. In fact, observers often are
tasked with putting together multiple, sometimes competing emo-
tional cues, such as facial expression, body language, situation out-
come, and verbal utterances. How does the observer integrate this
information—performing emotional cue integration—to infer the
agent’s underlying emotional state? We propose that as with other
forms of cognition, observers’ performance might be similar to an
ideal observer that rationally integrates cues to an agent’s emotion
using Bayesian inference.

The model we introduced earlier (Fig. 2) can be extended to
integrate multiple cues to emotion. Assume that the observer has
access to both the outcome o and the facial expression f. The pos-
terior probability of an underlying emotion e given both o and f is
given by the following equation:

Pðejo; fÞ / PðejfÞPðejoÞ
PðeÞ ð5Þ

A complete derivation of this equation is given in Appendix B.
The joint-cue posterior—that is, P(e|o, f)—is proportional to the pro-
duct of the individual cue likelihoods P(e|f) and P(e|o), normalized
by the prior probability of the emotion occurring P(e). This mathe-
matical expression captures the intuition that judgments using two
cues should be related to the judgments using each individual cue.

Not all cues provide equal information about the latent emo-
tion—some cues are more reliable than others. Consider P(e|f) or
the probabilities of observing different intensities of emotion e,
given a face f. A big frown, for instance, often signals low happi-
ness; thus, if we operationalize happiness as a variable ranging
from 1 to 9, we can represent P(happy|frown) as a curve that is
sharply peaked at a low value of happy, like 3 (see the red curve
in the top panel in Fig. 7.). In this case, when the observer can be
fairly confident of the inference of emotion given the face, we
say that this face is a reliable cue.

By contrast, if a second face has an ambiguous expression, this
face might not give the observer much information about the unob-
served emotion. In this case, we represent P(happy|ambiguous
expression) as a curve with a larger variance. If asked to make an
inference about an agent’s emotion based on this expression, obser-
vers make an inference on a value of happiness, but they may not be
confident in the accuracy of that estimate; this face is an unreliable
cue (see the red curve in the bottom panel in Fig. 7).

Consider the two faces described above, now each paired with a
medium-reliability context. Imagine an observer who sees an
agent unwrap a parcel from home, a context that usually elicits
some joy. If the observer sees the context paired with an ambigu-
ous facial expression (a relatively low-reliability cue), the obser-
ver’s judgments would tend to rely more on the context, because
the facial expression contributes little information (bottom panel,
Fig. 7). In contrast, if the observer sees instead a big frown (a rela-
tively high-reliability cue) with the context, the observer’s judg-
ments would tend to favor the facial expression over the context
(top panel, Fig. 7). Importantly, reliability gives a quantifiable
way of measuring how much each cue should be weighted with
respect to each other.

We operationalize the reliability of a cue by calculating the
information theoretic entropy (Shannon & Weaver, 1949), H, of
the emotion-given-cue (e.g. e|f) distribution:

H½PðejfÞ� ¼ �
X
f2F

PðfÞ
X

e

PðejfÞ log PðejfÞ ð6Þ

where the sum over e is taken over the different values of the
emotion (in our model, emotions take discrete values from 1 to
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Fig. 7. Illustration of the effect of the reliability of a cue in cue combination. The same contextual outcome cue distribution (green solid line) is given in both panels. Top: the
emotion distribution for a reliable face (red solid line). The distribution is relatively sharply peaked. Bottom: the emotion distribution for a less reliable face with the same
mean (red solid line), which results in a larger uncertainty in the distribution as compared to the top panel. The blue dashed line in both panels shows the product of the two
distributions (note that this is only the numerator in the cue integration equation, Eq. (5), and does not include the normalizing prior term in the denominator). One can see
that the low reliability cue has a relatively smaller effect on the distribution of the product: the distribution P(e|f) ⁄ P(e|o) in the bottom panel is very similar to the
distribution P(e|o). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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9 inclusive).8 The entropy of a distribution captures the amount of
information that can be obtained from the distribution, with a
more informative (‘‘sharply-peaked’’) distribution having lower
entropy. Thus, the higher the reliability of the cue, the lower the
entropy of the emotion-given-cue probability distribution.

The resulting model predictions are sensitive to the reliability of
a given cue. To illustrate, consider two faces, f1 and f2, whose dis-
tributions P(e|f) have the same mean. Let f1 have a much smaller
variance so that P(e|f1) is very sharply peaked (red curve, top
panel, Fig. 7), and let f2 have a much larger variance so that
P(e|f2) is almost uniform (red curve, bottom panel, Fig. 7) i.e., f1
is a more reliable cue and has less entropy than f2. In a single
cue emotion-perception scenario, where a observer has to make
an inference about the emotion e given only either f1 or f2, the dis-
tribution of the observer’s inferences would follow P(e|f); in both
cases, the observer would give the same mean, but perhaps with
more variance in the case of f2. Consider next a multi-cue integra-
tion scenario, where the observer is given two cues, the outcome
context o (green curve, Fig. 7), and either f1 or f2. Because f2 is less
reliable than f1, f2 will be weighted less with respect to o, than f1
will be weighted relative to o. Mathematically, this follows from
Eq. (5): multiplying the distribution P(e|o)/P(e) by P(e|f2) will have
little effect because P(e|f2) has very similar values across a large
domain of emotion values, and so would modify each potential
emotion by a similar amount. Conversely, multiplying by P(e|f1)
will have a larger effect (see Fig. 7 for an illustration).

Finally, we consider two approximations—or simplifications—
that observers could use during affective cognition, as alternatives
to our fully Bayesian cue integration model. Under a face-cue-only
model, a observer presented with a face f and an outcome o would
rely only on the face, and would thus use P(e|f) to approximate
P(e|o, f). Under a second outcome-cue-only model, the observer
instead relies exclusively on the outcome and uses P(e|o) to
approximate P(e|o, f). These approximations are meant to model
the predictions made by ‘‘face dominance’’ and ‘‘context domi-
nance’’ accounts (see above).
8 In our experiments, faces are chosen at random, hence we use a uniform
distribution for the prior on faces, P(f).
In Experiments 3 and 4, we calculate the performance of these
two approximate models in addition to the full Bayesian model. In
Experiment 3, we examined cue integration with outcomes and
faces, and in Experiment 4, we examined integration of evidence
from outcomes and verbal utterances, showing the generalizability
of the model to other types of emotional cues.

3.1. Experiment 3: Cue Integration from outcomes and faces

In Experiment 3, we tested our cue integration model by exam-
ining its correspondence with human judgments of combinations
of facial expressions and situation outcomes. On one third of the
trials, participants saw the outcome of a gamble that a character
plays, as in Experiment 1. On another third of the trials, partici-
pants saw only the facial expression following the outcome, but
not the outcome itself. On the final third of ‘‘joint-cue’’ trials, par-
ticipants saw both the facial expression and the outcome. On all
trials, participants attributed emotions to the character, as in
Experiment 1.

3.1.1. Participants
We recruited four hundred sixty-five participants through

Amazon’s Mechanical Turk. We planned for a larger number than
were included in Studies 1 and 2 because of the large number of
face stimuli tested.

3.1.2. Stimuli
The gambles were identical to Experiments 1 and 2, except that

we used only 10 possible scenarios for this experiment. We gener-
ated eighteen facial expressions, shown in Fig. 8, using the soft-
ware FaceGen. The first 12 faces varied in emotional valence and
arousal. Here, we operationalized emotional valence by parametri-
cally varying the curvature of the lips—for positive valence: an
upward turn in the lips for a smile; and for negative valence: a
downward turn in the lips for a frown or scowl—and the shape
of the eyes and eyebrows, with larger eyes and relaxed eyebrows
signaling positive valence, and smaller eyes and furrowed eye-
brows signaling negative valence. We operationalized emotional
arousal by varying the gap between the lips, with low arousal faces
having no gap between the lips and high arousal faces showing a
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wide gap (a wide mouthed smile or scowl with teeth). We designed
the final 6 faces to be ‘‘ambiguous’’, i.e. a mix of different emotions
like sad and angry, or sad and happy. We made these using a com-
bination of FaceGen’s preset discrete emotion settings. Exact com-
binations are given in Fig. 8 caption.
3.1.3. Procedures
Participants completed ten trials. On each trial, participants

watched a character play a gamble in the form of a wheel
(Fig. 9A). Participants saw the character spin the wheel, and were
then shown one of three possibilities. On Outcome-Only trials, par-
ticipants saw only the outcome on the wheel (similar to
Experiment 1). On Face-Only trials, a gray square would occlude
the outcome on the wheel, and participants saw only the facial
expression of the character after the character sees the outcome
on the wheel (we told participants that the character still could
see the outcome). Finally, on Joint-Cue trials, participants saw both
the outcome and the facial expression. See Fig. 9B for an illustra-
tion. These three types of trials (two types of single cue trials
and one joint-cue trial) occurred with equal probability, so on aver-
age each participant encountered about three of each type of trial,
out of ten total trials. On the joint-cue trials where both facial and
outcome cues are shown, we randomly matched the outcome and
face, so there was no correlation between the emotions typically
conveyed by the two cues. This ensured a random mix of congruent
(e.g., a large outcome on the wheel accompanied by a positive face)
and incongruent combinations (e.g., a large outcome on the wheel
accompanied by a negative face). On all trials, participants rated
the extent to which the character felt each of eight discrete emo-
tions—happy, sad, angry, surprised, fearful, disgusted, content, and
disappointed—using 9-point Likert scales.
10 In this section we bootstrapped parameter estimates and 95% confidence
3.1.4. Model details
We used participants’ responses to the single-cue Outcome-Only

and Face-Only trials to construct empirical distributions for P(e|o)
and P(e|f) respectively (Fig. 9C). For the outcome model, P(e|o), we
used the set of features isolated in Experiment 1 (win, PE, |PE|). The
ratings for the outcome-only trials were used to model P(e|o), in a
similar fashion to Experiment 1. The set of features isolated in
Experiment 1 enables a reduction in dimensionality of the situation
features, which allows the estimation of a less noisy statistical
model. For faces, it is less clear what a corresponding set of low
dimensional features would be, and so we estimated P(e|f) from
the raw density-smoothed9 empirical ratings to the face-only trials.
Using the face-only model P(e|f) and the wheel-only model P(e|o),
we can construct the full Bayesian cue integration model (Eq. (5)), as
well as the approximate face-only and wheel-only models.

We compared these three models against participants’
responses to the Joint-Cue trials. First, we used participants’
responses to the Joint-Cue trials to generate an empirical
(density-smoothed) probability distribution of emotion given a
particular face and outcome combination P(e|o, f). From this, we
calculated the expected emotion rating (i.e., a real value from 1
to 9) for each emotion for each combination. Finally, we compared
the empirical expectations with the expectations of the different
models. To clarify, though this was a within-subject paradigm,
we did not have enough statistical power to build a cue integration
model for each individual participant, Instead, we constructed
these models collapsed across participants.

To compare the performance of the models, we calculated two
quantities, the root-mean-squared-error (RMSE) and the correla-
tion, both with respect to the empirical data. We bootstrapped
9 We used R’s density function with its default settings to perform density
smoothing using a Gaussian kernel.
the two values, along with their 95% confidence intervals, from
bootstrap calculations with 5000 iterations.
3.1.5. Results
We present a summary of the results in Fig. 10. Comparing the

RMSE on all the trials (Fig. 10A), the Bayesian model performed the
best with the lowest RMSE of 1.218 [1.149, 1.287], outperforming10

both the Face-only model with 1.386 [1.314, 1.464] (t(49) = �3.30,
p = .002) and the Outcome-only model with 1.524 [1.462, 1.589]
(t(49) = �6.46, p < .001). Correspondingly, the Bayesian model also
had the highest correlation with the empirical data (r = 0.812
[0.790, 0.833]), performing significantly better than the Face-only
(r = 0.733 [0.706, 0.759]; t(49) = 4.55, p < .001) and the
Outcome-only (r = 0.692 [0.664, 0.717]; t(49) = 7.06, p < .001) mod-
els (Fig. 10B).

Next, we analyzed two subsets of the data that contained incon-
gruent cue combinations: Joint-Cue trials that had a
negatively-valenced face presented with a ‘‘positive’’ wheel
(defined as winning the largest amount on the wheel), and
Joint-Cue trials that had a positively-valenced face presented with
a ‘‘negative’’ wheel (defined as winning the smallest amount on
the wheel). Although the pattern of RMSEs did not differ from
the set of all trials to the incongruent combinations (Fig. 10A),
we found an interesting result when we examined the correlations
of the single-cue-only models in the incongruent cue-combination
trials (Fig. 10B). When a negative face is presented with a positive
wheel, the Face-only model produced a lower correlation of
r = 0.343 [0.213, 0.468]) than the Outcome-only model (r = 0.465
[0.332, 0.576]; t(49) = �1.31, p = .20, not significant) and the full
Bayesian model (r = 0.571 [0.454, 0.668]; t(49) = �2.61, p = .012,
significant with some overlap of the 95% CIs). Conversely, when a
positive face is presented with a negative wheel, the
Outcome-only model did significantly worse with a correlation of
0.297 [0.165, 0.422], as compared to the Face-only model
(r = 0.678 [0.551, 0.778]; t(49) = �4.19, p < .001) and the full
Bayesian model (r = 0.667 [0.568, 0.748]; t(49) = �4.55, p<.001).
In other words, if we compare the single-cue-only models, when
a negative cue is presented with a positive cue, the model that only
considers the positive cue better approximated observer judg-
ments than the model than only considers the negative cue.

This ‘‘valence-dominance’’ result is surprising, and in fact, is not
predicted by the literature, which, as laid out earlier, predicts
specific-cue-dominance. The Bayesian model, however, seems to
account for this valence effect extremely well. In particular, the
Bayesian model automatically weights the positive cues to a
greater extent than the negative cues. Because the Bayesian model
weights cues according to their reliability (see discussion above,
especially Fig. 7), this suggests that the positive cues have a higher
reliability than the negative cues. If this is true, then the positive
cues distributions (both P(e|o) and P(e|f)) should have a lower
entropy than the negative cue distributions. Post-hoc analyses con-
firmed this predicted difference in distribution entropies. The neg-
ative faces have a significantly higher entropy (mean entropy of
the emotion given negative face distributions = 2.66 bits,
SD = 0.43 bits) as compared to the positive faces (mean
entropy = 1.60 bits, SD = 0.97 bits; t(7) = 2.70, p = .03). Similarly,
the negative wheels have a significantly higher entropy (mean
entropy = 2.39 bits, SD = 0.37 bits) than the positive wheels (mean
entropy = 1.99 bits, SD = 0.43 bits; t(7) = 4.10, p = .005). This high-
lights an interesting result: the reason why there seems to be some
intervals. This allows judgment statistical significance of differences by CI
non-overlap, a non-parametric approach. For ease of comparison, we additionally
estimate and report t-statistics, bearing in mind the hidden parametric assumptions
that may not be satisfied.



Fig. 8. Face stimuli used in Experiment 1, created using FaceGen. The 12 faces in the top and middle rows vary in both valence and arousal. Top row: positively valenced faces,
increasing in valence and arousal from left to right. Middle row: negatively valenced faces, decreasing in valence and arousal from left to right. The top and middle right-most
faces are neutral valence high arousal and neutral valence low arousal, respectively. Bottom row: set of ‘‘ambiguous’’ faces made using combinations of FaceGen’s pre-defined
discrete emotions. From left to right: (Sad, Surprised, and Happy), (Angry, Happy, and Surprised), (Fear, Happy, and Disgust), (Disgust, Surprised, and Happy), (Sad, Happy,
Disgust and Fear), and (Sad, Happy, and Angry).

Fig. 9. (A) Screenshot from a trial from Experiment 3. Participants saw a character about to spin a wheel with three possible outcomes. (B) Each trial resulted in one of three
possibilities: the participant is shown (i) only the outcome, (ii) only the character’s facial expression, or (iii) both the outcome and the facial expression. Following this, the
participant is asked to judge the character’s emotions. (C) The single cue trials are used to model P(e|o) and P(e|f) respectively, which serve as single-cue only models. The
single-cue models are used to calculate the Bayesian cue-integration model. These three models are evaluated using empirical judgments made by participants in the joint-
cue trials.
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evidence for a ‘‘positive-valence-dominance’’ is because positive
cues tend to have higher reliability. This result implies that—at
least in the context of our task—participants tend to be more cer-
tain when making emotion attributions to agents given positive,
as compared to negative, cues.

In sum, the results from Experiment 3 showed that the Bayesian
model best predicts participants’ judgments of emotions in
multiple-cue scenarios. In addition, this quantitative paradigm
allowed us to examine participants’ emotion attributions in incon-
gruent cue combinations, and uncovered evidence for a different
type of dominance: in our paradigm, positively-valenced cues have
greater reliability and tend to dominate negatively-valenced cues.
However, we do not want the take home message to be that ‘‘posi
tive-valence-dominance’’ is a better rule than face or context dom-
inance to resolve conflicts; in fact, this is antithetical to the spirit of
the model. The Bayesian model makes one simple assumption: that
observers weigh cues according to the cues’ reliability. In this gam-
bling paradigm, positive cues have higher reliability, but we do not
want to generalize that positive cues in other contexts are more
reliable as well. The Bayesian model accounted for this valence
effect even without an explicit assumption, further suggesting that
a rational approach to emotional cue integration is well able to
capture these intricacies in affective cognition.

3.2. Experiment 4: Cue integration from outcomes and utterances

Experiment 3 examined combinations of facial expressions and
situation outcomes. In Experiment 4, we show that our model gen-
eralizes to other cues by examining combinations of verbal utter-
ances and situation outcomes.



Fig. 10. Results of Experiment 3. Error bars indicate bootstrapped 95% confidence intervals. (A) Root-mean-squared-error for the different models. From left to right,
performance on all data; performance on the negative face, positive wheel trials; and performance on the positive face, negative wheel trials. (B) Correlations of the different
models with empirical judgments. (C) Performance of the Bayesian model on all trials. On the vertical axis are participants’ judgments of all eight emotions in the joint-cue
trials, and the horizontal axis indicates the models’ predicted emotions. The red-dashed line has an intercept of 0 and a slope of 1, and is added for reference. The model’s
correlation with the empirical joint-cue predictions was 0.812 [0.790, 0.833].
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3.2.1. Participants
We recruited one hundred fifty participants through Amazon’s

Mechanical Turk.

3.2.2. Stimuli
We used identical gambles to Experiment 3. We replaced the

facial expression with an utterance, ostensibly made by the charac-
ter after seeing the outcome of the wheel. The list of the 10 utter-
ances (‘‘cool’’, ‘‘awesome’’, ‘‘yay’’, ‘‘wow’’, ‘‘man’’, ‘‘oh’’, ‘‘damn’’,
‘‘dang’’, ‘‘meh’’ and ‘‘yikes’’) included a mix of clearly valenced
utterances and ambiguous utterances.

3.2.3. Procedures
We used identical procedures to Experiment 3, except that

instead of face stimuli, participants saw an utterance that ostensi-
bly was made by the character after seeing the outcome of the
wheel. Each participant completed 10 trials. On each trial, partici-
pants saw either (i) an Outcome-Only trial, (ii) an Utterance-Only



Fig. 11. Results of Experiment 4. (A) Root-mean-squared-error for the different models. From left to right, performance on all data; performance on the negative utterance
and positive wheel trials; and performance on the positive utterance and negative wheel trials. (B) Correlations of the different models. (C) Performance of the Bayesian model
on all trials, showing a correlation with the empirical joint-cue predictions of 0.733 [0.687, 0.770].
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trial, or (iii) a Joint-Cue trial with both outcomes and utterances,
randomly paired. Participants then attributed emotions to the
character as in Experiment 3.

3.2.4. Results
We repeated the same analysis procedure as in Experiment 3.

We used participants’ responses to the Utterance-Only and
Outcome-Only trials to construct the empirical distributions for
P(e|u) and P(e|o) respectively. Next, we used these two models
to construct the full Bayesian model P(e|o, u). Replicating the
results of Experiment 3, on all trials, the Bayesian model performs
the best with the lowest RMSE of 1.494 [1.391, 1.612], performing
significantly better as compared to the Utterance-only model at
1.847 [1.731, 1.969] (t(49) = �4.18, p < .001), and better, but not
significantly, as compared to the Outcome-only model at 1.619
[1.512, 1.724] (t(49) = �1.54, p = .13). When we examined the cor-
relation with the empirical judgments, the Bayesian model
achieved a correlation of r = 0.733 [0.687, 0.770], again, signifi-
cantly better compared with the Utterance-only model at
r = 0.570 [0.518, 0.618] (t(49) = 4.81, p < .001), and the
Outcome-only model at r = 0.668 [0.623, 0.710] (t(49) = 2.05,
p = .046, significant with some overlap of the 95% CIs) (Fig. 11).

When we repeated the analysis for the incongruent combina-
tion subsets, we find that the Bayesian model again tightly predicts



Fig. 12. Scatterplot results of Experiment 4, only on the trials with the incongruent combination of Negative Utterance and Positive Outcomes. All emotions are plotted.
Participants’ judgments are plotted on the y-axis on all three graphs. The Utterance-only model, in the bottom right, has a negative correlation with the data, due to the larger
spread, possibly due to potential pragmatic interpretations that the utterance-only model cannot account for.
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observers’ judgments, with a high correlation with the empirical
judgments (Negative Utterance and Positive Outcome, r = 0.784
[0.702, 0.845]; Positive Utterance and Negative Outcome,
r = 0.517 [0.367, 0.620]), although it did not significantly outper-
form the Outcome-only model (Negative Utterance and Positive
Outcome, r = 0.775 [0.684, 0.844]; t(49) = 0.16, p = .87; Positive
Utterance and Negative Outcome, r = 0.486 [0.321, 0.628];
t(49) = 0.29, p = .77) in this experiment (see Fig. 11).

Unexpectedly, the Utterance-only model showed a negative
correlation of r = �0.147 [�0.276, �0.012] with the empirical judg-
ments in trials in which a negative utterance was presented with a
positive outcome. We suspect that this is because utterances could
be interpreted pragmatically, i.e., in a non-literal way. Consider an
utterance like ‘‘dang’’: this utterance carries a negative literal con-
notation (e.g. expected happiness given ‘‘dang’’ alone was 2.66 on a
1–9 scale). However, when paired with a positive outcome—an
example outcome which, rated alone, produced an expected happi-
ness rating of 8.18—the combination of ‘‘dang’’ and the outcome
could be interpreted as being even more positive (expected happi-
ness of the combination of ‘‘dang’’ and the outcome is 8.75). Thus,
although observers might interpret an individual verbal cue to be
negative, they might interpret the same cue, presented with a pos-
itive outcome, to be positive, perhaps as a form of sarcasm or
hyperbole. Note that there is much heterogeneity in the way that
participants interpret these combinations: not everyone treats
them pragmatically, and not every such combination is treated
pragmatically. This heterogeneity results in a larger spread in
participant responses to the joint combinations relative to the
utterance-only results (see Fig. 12). This effect likely drives the
negative correlation of the (literal) Utterance-only model with
the judgments of the combinations given by participants. It is
worth noting that there has been recent success in applying
Bayesian models to study interpretation of non-literal language
(Frank & Goodman, 2012; Kao, Wu, Bergen, & Goodman, 2014).
Future work could extend our model of affective cognition to
include these pragmatic effects.

Finally, as in Experiment 3, we find an effect of valence on cue
reliability: positive cues have higher reliability and lower entropy
than negative cues. For outcomes alone, the negative wheels show
a significantly higher entropy (mean entropy = 2.38 bits, SD = 0.37
bits) than the positive wheels (mean entropy = 1.98 bits, SD = 0.40
bits; t(7) = 5.01, p = .002). This was the case for utterances as well;
entropy for negative utterances (mean entropy = 2.69 bits,
SD = 0.45 bits) was greater than for the positive utterances (mean
entropy = 1.77 bits, SD = 0.80 bits; t(7) = 2.83, p = .03). This rein-
forces the finding from Experiment 3 that participants seem to
be more certain in their judgments given positive cues than nega-
tive cues, at least in this gambling context.

The results of this experiment show that the emotional cue
integration model we propose, derived from a Bayesian treatment
of lay theories, generalizes beyond facial expressions to other cues.
Experiment 4 also replicates many of the critical results from
Experiment 3, including the consistent performance of the
Bayesian model.
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3.3. Revisiting emotions from outcomes: a combined analysis

Experiments 3 and 4 were designed to test our cue integration
predictions, using analyses that built upon the results of
Experiment 1, which explored the important outcome features
for predicting participants’ affective judgments. However,
Experiments 3 and 4 also produced additional data with which
we can re-examine Experiment 1’s results, that is, the statistical
causal model of outcomes to emotions. This combined analysis
would allow us to test the reliability of the results of the statistical
model that we built in Experiment 1 (and used in the cue integra-
tion analyses above). In order to do this, we proceeded to isolate
the wheel-only trials from Experiments 3 and 4, together with all
the trials from Experiment 1, creating a dataset of 3048 observa-
tions from 690 participants.

With this larger dataset, we repeated the model selection, with
the full set of regressors (as in Appendix A), to determine which out-
come features significantly predict attributed emotions. As
expected, the amount won, PE, and |PE| again came out as significant
predictors for the various emotions (details in Appendix A), with
several additional patterns of interest: e.g., fear is only predicted
by the amount won. Surprise now strongly depends on |PE|, regret,
and the winning probability, which suggests a different structure
for surprise than the rest of the emotions (additional evidence for this
is also given by the different loadings in the PCA analysis).

One additional regressor of note became significant with this
larger dataset: the near-miss term predicted happiness
(b =�3.32e�05 [�5.51e�05 �1.12e�05], t(682) =�2.963, p = 0.003).
We tested for, but did not find a significant difference between pos-
itive and negative near-misses (v2(1) = 0.089, p = 0.77), i.e., whether
the next-nearer outcome was a larger or smaller payoff, although
this could just be from a lack of power. To better understand the
magnitude of the near-miss term, let us consider a concrete
near-miss example using the slopes on win (b = 0.0405 [0.029,
0.052], t(682) = 7.08, p < .001), PE (b = 0.036 [0.024, 0.048], t(682) =
5.95, p < .001), and |PE| (b = �0.015 [�0.025,�0.005] t(682) = �2.84,
p = .006), and the $25/$60/$100 wheel in Fig. 2. Not considering the
near-miss term, and all else being equal, if the result had changed
from $60 to $100, there would be an increase in happiness of
40 ⁄ (.0405 + 0.036 � 0.015) = 2.46 points on a 9 point Likert scale.
By contrast, if the outcome result (the exact point the black pointer
indicated) moved from the center of the $60 sector to a near-miss
distance of 1% of the sector size away from the $60/$100 boundary,
there would be a decrease in happiness of 40 ⁄ (1/0.5 � 1/0.01) ⁄
(�3.32 ⁄ 10�5) = 0.130 points on a 9 point scale. Thus, in this gam-
bling scenario, the effect of a near-miss on subjective happiness
attributed is on the order of 5% of the relative happiness of winning
the next higher amount. Getting a near-miss on the $60 wheel in
Fig. 2 and narrowly missing the $100 sector (narrowly missing win-
ning $40 more) has a subjective cost equivalent to losing about $2,
compared with a far-miss (landing in the center of the sector). This
is a small effect relative to actually winning—and indeed, we could
not detect it with Experiment 1 data alone—yet it is a large and
not insignificant effect considering that it does not depend on chang-
ing actual payoffs, but merely relative closeness. This result builds
upon the results of Experiment 1 by investigating what additional
situation features might factor (perhaps more weakly) into affective
cognition in this paradigm.
4. Discussion

We have proposed a framework for studying affective cognition
as domain-general reasoning applied to a domain-specific lay the-
ory of emotions; the lay theory is described as a statistical causal
knowledge of others’ emotions, and reasoning as Bayesian
inference based on this knowledge. Observers’ lay theories consist
of a consistent structure that captures causal relationships
between situation outcomes (or emotion-eliciting events), the
agent’s emotions, and the agent’s observable behaviors. Each of
these causal relationships contains complex knowledge: for exam-
ple, an observer incorporates appraisal processes when reasoning
about how an agent feels after the outcome of a situation. This
framework makes detailed quantitative predictions that were
borne out in a series of experiments. We demonstrated that obser-
vers are able to consistently reason both forward, along the causal
direction, and ‘‘backwards’’, about causes based on emotional reac-
tion. The forward causal model relied on a small set of situation
features (Experiment 1), and backward reasoning was
well-described as Bayesian inference given this forward model
(Experiment 2). This approach provides further traction in under-
standing how observers infer unobservable emotional states from
diverse observable cues. In particular, we have shown that inte-
grating multiple sources of information as prescribed by Bayesian
statistics explains human judgments of emotions from facial
expressions and outcomes (Experiment 3), and from utterances
and outcomes (Experiment 4). Our results showed an interesting
‘‘valence dominance’’ effect, whereby positively-valenced emo-
tional cues tended to have higher reliabilities and were weighted
more so than negatively-valenced cues. Our model was able to
account for this valence effect without a priori specification, attest-
ing to the robustness of a probabilistic model of affective cognition.
Our studies contrast with previous studies that have found face or
context dominance (e.g., Aviezer et al., 2008; Nakamura et al.,
1990; Russell et al., 2003) in that our paradigm involves a
restricted gambling context; it is possible that our valence result
may not generalize to other contexts, though we believe that the
underlying model of cue integration will still be applicable.

Emotions are numerous and complex, and we have only exam-
ined emotional reasoning in very constrained gambling scenarios.
These scenarios constitute a reasonable starting point for studying
affective cognition, because they afford consistent assumptions
and quantitative manipulations. For instance, an agent playing a
gamble almost certainly wants to win more money, giving obser-
vers a clear cornerstone for understanding the affective meaning
of different gamble outcomes. Even in these simple scenarios, with
ostensibly simple economic motivations, participants were sensi-
tive to subtle ‘‘irrationalities’’ that they expected the agent to
evince. For instance, by pooling data from three of our experi-
ments, we found that the nearness of alternative, better outcomes
(or worse outcomes) factored into our participants’ inferences
about agents’ emotion. Further work will likely uncover additional
features that factor into affective cognition.

Not all emotions are relevant in our scenarios—fear, for exam-
ple, may be irrelevant, as may a more complex emotion like
pride—and furthermore, we might reason about emotions like hap-
piness differently in a gambling context than in other contexts. One
avenue of further research includes extending our model to more
complex situations. For instance, people do not live in a social vac-
uum, and emotions often depend on interactions with others: a
comprehensive model would include how observers reason about
emotions in social interactions, leading to emotions like pride
and jealousy.

The work presented here was concerned with high-level rea-
soning, and abstracted out, for example, the process by which we
perceive facial expressions (How does an observer look at a face
and decide that the agent is happy? Which facial features are
important?), or how we interpret the linguistic content of emo-
tional utterances (How do we interpret ‘‘dang’’ as negative?). In
this work, we measured the connection between these percepts
and emotional states, rather than explaining them, then investi-
gated how observers utilized them to make higher-level
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inferences. The details of these processes are important in a full
description of affective cognition, and each of these will require
further, domain-specific study into the lay theory of emotion.
That said, we believe that the framework considered here—treating
affective cognition using domain-general reasoning—is generaliz-
able and will extend to more detailed knowledge about emotions.

4.1. Relation to modeling of social cognition

In Fig. 2 and throughout this paper, we alluded to other mental
states, such as the agent’s goals, that are important in a lay theory
of emotion but that we did not consider in detail. This tight link
between emotions and other mental states translates into a strong
parallel of our work with other models of social cognition (e.g.,
Goodman, Baker, & Tenenbaum, 2009). For example, Baker et al.
(2009) proposed a computational model of Theory of Mind that
incorporates an agent’s beliefs and desires into an observer’s lay
theory of behavior. This was a formalization of earlier work in
belief-desire psychology, describing a lay theory of how an agent
rationally chooses actions given his beliefs and desires (Dennet,
1989; Gopnik & Meltzoff, 1997). In a similar fashion, the recently
proposed Rational Speech Act (RSA) model (e.g., Frank &
Goodman, 2012; Goodman & Stuhlmüller, 2013; Kao et al., 2014)
treats language understanding between agents as rational social
cognition. Again, this work has its roots in earlier work on commu-
nication between rational agents (e.g., Clark, 1996). The RSA model
assumes that the speaker rationally chooses his utterance to con-
vey his desired inference to the listener, and the listener recur-
sively reasons about the speaker’s mental state to infer the goal
of the speaker. These and other models of social cognition are help-
ing to shed light on how naïve observers reason about the cognitive
states of those around them.

Integrating the lay theories of cognitive states (beliefs and
desires) and lay theories of emotions will have explanatory bene-
fits for both lines of work. For instance, in this paper we implicitly
assumed the goals of the agent, and showed how observers reason
about an agent’s emotions with respect to the prediction error of
the situation, or how well the situation compared to the agent’s
expectations. In our paradigm it was a safe assumption that agents
wished to win larger amounts of money; in more general situations
the observer would have to make an inference about the agent’s
goals in order to evaluate the ‘‘prediction error’’. Thus, one would
have to incorporate inferences over goals into a comprehensive
theory of affective cognition. In the other direction—adding emo-
tions into other models of social cognition—attributed emotions
become a potential cause for otherwise ‘‘irrational’’ actions that
are observed. This is an important extension to current models of
social cognition, which must explain actions as the result of
rational, purposive behavior or of simple noise.

4.2. Relation to scientific theories of emotion

Here we have focused on lay theories that observers apply to
understand the emotions of those around them, but people likely
apply an analogous reasoning process to reason about their own
emotions as well. This is consistent with evidence that people
use similar strategies when reasoning about their own traits and
preferences (Bem, 1972; Gopnik, 1993; Nisbett & Wilson, 1977).
Contrary to many people’s intuition, it appears that individuals
do not have privileged access to their ‘‘true’’ mental states; rather,
they use observations of their own behaviors and situations to rea-
son about themselves using lay theories—similar to how they
might reason about other people.

A similar paradigm shift in affective science increasingly sug-
gests that people do not have ‘‘privileged access’’ to their emo-
tional experience, but instead reason about their experiences in a
contextualized manner. For instance, under Feldman Barret
et al.’s Conceptual Act Theory (Barrett, 2006; Lindquist & Barrett,
2008), a typical emotion experience starts with the agent experi-
encing a stimulus. The agent collects information about the context
as well as visceral signals of valence (e.g. pleasurable feelings) and
arousal (e.g. heart rate, clammy skin)—what Barrett calls ‘‘core
affect’’ (Russell & Barrett, 1999). The agent then uses these pieces
of information as inputs into a conceptualization process wherein
the agent labels their emotion using emotion concepts—the agent’s
own lay theory of emotion.

Our approach to understanding third-person affective cognition
mirrors the emerging prominence of concepts and lay theories in
first-person emotional experience. There is much room for overlap
and progress down these parallel and complementary paths. On
the one hand, studying first-person emotional experience might
give insight into what factors go into a third-person lay theory.
In our work, for example, we build off prior work in appraisal the-
ory (e.g., Ortony et al., 1988) and behavioral economics (e.g.
Kahneman & Tversky, 1979) to inform our a priori assumptions
of PE and loss aversion, which we can then test in a third-person
context. Conversely, studying third-person lay theories might
allow testing of predictions that might be hard to manipulate in
a first-person context. For example, in a first-person context, it is
difficult to experimentally separate the affective component of a
response from the cognitive processes of reasoning and categoriza-
tion. If a researcher finds a phenomenon in a first-person context
and cannot distinguish whether it might be due to a cognitive pro-
cess, then translating the paradigm into a third-person context
might allow the researcher to isolate the cognitive components
of that reasoning. Thus our work may prove useful in understand-
ing emotional experience in addition to emotional reasoning.
4.3. Applications

An affective cognition approach also holds a great deal of
applied potential. One natural application is to artificial agents cap-
able of interacting with emotional users (e.g., Breazeal, 2004;
Gratch & Marsella, 2004; Hudlicka, 2003; Picard, 1997; Wehrle &
Scherer, 2001). There are many specific applications of emotionally
aware agents. Researchers have started using ‘‘virtual humans’’ in
training physicians in patient interaction (Raij et al., 2007; see also
Medical Cyberworlds, Inc.), and using realistic avatars to populate
immersive virtual reality environments in order to improve users’
social cognition (Bailenson, Yee, Merget, & Schroeder, 2006;
Swartout et al., 2006). Other researchers have worked on buildings
robots that can provide companionship—often termed Social
Robotics, for example, Kismet, from the MIT Media Lab (Brooks,
Breazeal, Marjanović, Scassellati, & Williamson, 1999). Building
on our framework here, we can imagine endowing artificial obser-
vers with a human-like theory of emotions. If one uses a psycho-
logically validated computational model to allow artificial
observers to reason about emotions, this could result in
near-human-level ability to attribute emotions, but importantly,
do so in a way that a human partner would expect. One could
imagine incorporating a lay theory of emotion into personal digital
assistants (like Apple’s Siri and Google’s Google Now) which, when
combined with the enormous amount of information they ‘‘ob-
serve’’ about their users, would allow digital assistants to reason
about and react to their users’ emotions. This would have far reach-
ing implications for the efficiency of these products (digital assis-
tants pre-empting users’ emotions and choices) and also improve
users’ likeability of the product. We might also start seeing these
digital assistants doubling up as conversation partners, and per-
haps providing basic advice and counseling services (e.g., modern
successors to the ‘‘computer therapist’’ ELIZA).



158 D.C. Ong et al. / Cognition 143 (2015) 141–162
This segues into another potential area in which a theory affec-
tive cognition could prove useful: the diagnosis and treatment of
psychopathology. The idea that disorders might arise from a bias
in affective cognition dovetails with popular approaches in clinical
psychology, such as Cognitive Behaviorism, which conceptualizes
affective disorders as stemming from maladaptive cognitive biases
(Beck, 1979). Our work might serve as an additional tool that the
cognitive behavior therapist may use to help identify patients’
biases in reasoning about others’, and possibly the patients’ own,
emotions. One noteworthy and emerging field is that of
Computational Psychiatry (Huys et al., 2012; Montague, Dolan,
Friston, & Dayan, 2012; Sharp, Monterosso, & Montague, 2012),
which assumes that social and emotional functioning can be char-
acterized by computational ‘‘phenotypes’’, which comprise genetic,
neural, and behavioral characteristics described in a computational
model of cognitive functioning. Similarly, our work provides a way
to model behavioral attributions of emotions that could form part
of these models of psychiatric disorders. One could imagine using a
model of affective cognition to help identify characteristic biases in
certain psychiatric populations: for example, perhaps patients who
suffer from anxiety might also attribute increased emotional reac-
tivity to agents (greater reliance on PE, |PE|) as compared to a typ-
ical observer. Finally, combining the applications to technology
and psychopathology, our work could enable novel technologies
for scalable diagnosis and treatment. Our work could inform auto-
mated cognitive monitoring applications and automated dialog
agents that can measure early warning diagnostic signs or serve
as artificial therapists (e.g., Barak & Grohol, 2011; Helgadóttir,
Menzies, Onslow, Packman, & O’Brian, 2009; Kenny, Parsons,
Gratch, & Rizzo, 2008). In sum, building a computational model
of affective cognition has many potential applications, and here
we have listed only a few that we feel are most promising.
5. Conclusion

Humans are lay psychologists that use theories to understand
the people around them, and often how, when, and why these peo-
ple experience emotions. In this paper, we propose a framework for
studying affective cognition—reasoning about emotion—using a
computational, lay theory approach. This approach concentrates
Table A1
Table of coefficients (with p-values in parentheses) for the models with all seven regressors
(i.e. from the table). Total after model selection indicates number of regressors remaining

Win PE |PE|

Happy 0.036 (<0.001***) 0.027 (<0.001***) �0.020
(<0.001***

Sad �0.024 (<0.001***) �0.018 (0.022**) 0.028 (<0.

Anger �0.0041 (0.31) �0.025
(<0.001***)

0.027 (<0.

Surprise 0.019 (0.029*) �0.019 (0.035*) 0.027 (<0.

Disgust �0.0084 (0.022*) �0.026
(<0.001***)

0.022 (<0.

Fear �0.0021 (0.36) �0.0039 (0.31) 0.0034 (0.

Content 0.034 (<0.001***) 0.024 (0.0135*) �0.014
(0.0025**)

Disappointment �0.025 (<0.001***) �0.035
(<0.001***)

0.023 (<0.

Total significant 6 7 7
Total after model

selection
5 (ex. anger, disgust,
fear)

8 8

* p < .05.
** p < .01.

*** p < .001.
on how observers reason about emotions, and our results show a
surprising rationality and flexibility in the way human observers
perform affective cognition. Specifically, the way that observers
reason between pairs of variables (emotions and the outcomes that
cause them), and the way that observers combine information
from multiple sources to infer emotion (emotional cue integra-
tion), can both be described using domain-general reasoning sim-
ilar to other forms of cognition. Emotions are immensely
complicated, and have complex interactions with other psycholog-
ical states—these relationships are captured in a domain-specific
lay theory of emotions. Yet, the way that an observer reasons about
these complex emotions can be described and understood using
the same inferential processes that underlie reasoning in other
psychological domains. It is our hope that the study of affective
cognition—treated as another form of cognition—will drive forward
theory and empirical studies in affective science, social cognition,
and the crucial bridge between them.
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Appendix A. Model selection and Principal Component Analysis

A.1. Experiment 1 model selection details

For the analysis in Experiment 1 (Section 2.1.3), we performed
model selection from the full set of a priori specified features
(win, PE, |PE|, Regret, Relief, logWinProb and nearMiss). In the table
below, we report coefficients for the full model (with all 7 predic-
tors). We can see from the full model that win, PE and |PE| predicts
the majority of all emotions. In particular, PE and |PE| predict all
except fear, and win predicts all except fear and anger. Fear is a
strange emotion in this paradigm, and so not much inference
should be drawn from the results for fear. The other notable emo-
tion to note is surprise, which has significant loadings on some of
the other predictors. Note that we can also see interesting
. Total significant refers to the total count of significant predictors from the full models
after model selection.

Regret Relief logWinProb nearMiss

)
0.0055 (0.36) 0.0056 (0.24) �0.31 (0.032*) �1.5e�05 (0.23)

001***) �0.0018 (0.80) �0.0026
(0.64)

0.10 (0.54) �2.6e�06 (0.86)

001***) 0.0013 (0.83) �0.0011
(0.81)

�0.10 (0.48) �2.1e�06 (0.87)

001***) 0.024 (0.003**) 0.015 (0.016*) �1.94
(<0.001***)

2.2e�05 (0.22)

001***) 0.0075 (0.16) 0.00063
(0.88)

�0.029 (0.82) 3.3e�06 (0.78)

063.) �0.00031
(0.93)

0.0012 (0.64) 0.013 (0.87) �1.3e�05
(0.071.)

�0.0032 (0.71) �0.0001
(0.98)

�0.26 (0.20) �1.3e�05 (0.48)

001***) �0.0097 (0.19) �0.0036
(0.52)

0.17 (0.32) �1.6e�05 (0.33)

1 1 2 0
1 surprise 1 surprise 2 surprise,

happy
0



Table A2
Table of coefficients (with p-values in parentheses) for the final model used in the
text, with only win, PE, |PE|.

Intercept Win PE |PE|

Happy 4.515
(<0.001***)

0.0386
(<0.001***)

0.0350
(<0.001***)

�0.0177
(<0.001***)

Sad 3.380
(<0.001***)

�0.0245
(<0.001***)

�0.0217
(<0.001***)

0.0268
(<0.001***)

Anger 1.721
(<0.001***)

�0.00375
(0.251)

�0.0251
(<0.001***)

0.0267
(<0.001***)

Surprise 3.251
(<0.001***)

0.0222
(<0.001***)

0.012
(0.013*)

0.0373
(<0.001***)

Disgust 1.764
(<0.001***)

�0.00536
(0.066.)

�0.0211
(<0.001***)

0.0217
(<0.001***)

Fear 1.381
(<0.001***)

�0.00225
(0.23)

�0.00325
(0.09.)

0.00342
(0.037*)

Content 3.709
(<0.001***)

0.0321
(<0.001***)

0.0221
(<0.001***)

�0.0124
(0.0025**)

Disappointment 4.724
(<0.001***)

�0.0292
(<0.001***)

�0.0441
(<0.001***)

0.0219
(<0.001***)

* p < .05.
** p < .01.

*** p < .001.
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differences between surprise and the other emotions, from the
Principal Component Analysis (see below in Appendix A.3)

Next, we performed stepwise backward elimination using the
step function in the lmerTest package in R. Starting from the full
model, the variables are considered one at a time for elimina-
tion, and the function calculates an anova to compare the
model with and without the variable. According to the final
model selection, the prediction error (PE) and its absolute value
(|PE|) predicted was significant in predicting all of the emotions
(last row of Table A1). For the amount won, it was significant
after selection for five emotions, and trending for one, so we
included it in the final set of regressors. The last four regressors
did not have much explanatory power. Finally, in Table A2, we
report the coefficients in the reduced model that we used in
Experiments 1–2. (Note also that although we use the same
regressors (win, PE, |PE|) in Experiments 3 and 4, the coeffi-
cients were fitted to the data in Experiments 3 and 4
respectively.)
Table A3
Similar to Table A1, now with combined data from Experiments 1, 3 and 4. Table of coeffi
significant refers to the total count of significant predictors from the full models (i.e. from
model selection.

Win PE |PE|

Happy 0.036� (<0.001***) 0.021� (0.094.) �0.017�

(0.0057**)
Sad �0.027� (0.012**) �0.014� (0.32) 0.028�

(<0.001***

Anger �0.0015� (0.038*) �0.017� (0.171) 0.028�

(<0.001***

Surprise 0.0042 (0.532) �0.019 (0.107) 0.031�

(<0.001***

Disgust �0.015� (0.026*) �0.020� (0.093.) 0.023�

(<0.001***

Fear �0.0083�

(<0.001***)
�0.0020 (0.58) 0.0027 (0.

Content 0.028� (<0.001***) 0.011 (0.34) �0.015�

(0.011*)
Disappointment �0.027�

(<0.001***)
�0.030� (0.020*) 0.023�

(<0.001***

Total significant 7 1 7
Total after model

selection
7 (ex. surprise) 5 (ex. fear, content,

surprise)
7 (ex. fear

* p < .05.
** p < .01.

*** p < .001.
� Indicates the regressor was significant after model selection.
A.2. Combined analysis model selection details

We repeated this model selection analysis with the data from
Experiments 1, 3 and 4 (discussed in Section 3.3). The table for
the combined data is given in Table A3, with the coefficients for
the full model as well as the total after model selection. The results
are qualitatively similar to those reported in Table A1 above. In the
full model, the amount won and |PE| predict 7 emotions, while PE
strangely predicts only 1 emotion, but after model selection,
amount won and |PE| predict 7, and PE predicts 5. For illustration,
we have indicated in Table A3 the regressors that survived model
selection. Similar to above, we noticed that the pattern of coeffi-
cient loadings on surprise and fear formed a different profile as
compared to the other emotions.

The model selection results for Contentment was initially puz-
zling to us: if we include just win, PE and |PE| in the regression
model (i.e., the formula we used in Experiments 3 and 4), all three
are significant predictors, as we expect from Table A1 (model
log-likelihood = �6439.2, AIC = 12,894, BIC = 12,943). However,
starting from the full set of regressors and performing backward
step selection (which maximizes log-likelihood) yields win, |PE|,
Regret and Relief as significant predictors (model log-likelihood =
�6438.7, AIC = 12,895, BIC = 12,950). It seems that in this particular
case for contentment, the two models are very similar in perfor-
mance (with the log-likelihood of the latter model barely outper-
forming the former by 0.5, but the AIC and BIC of the former
model also barely outperforms the latter).
A.3. Principal Component Analysis details

We performed a Principal Component Analysis (PCA) of partic-
ipants’ emotion ratings using R’s princomp function (discussed in
Section 2.1.4). The loadings of each of the PCs, as well as their stan-
dard deviations and proportion of total variance explained, are
given in Table A4. In the main text, we limit the discussion to
the first two PCs (see Fig. 4). The first PC, with 59.1% of the vari-
ance, loads positively with positively-valenced emotions, and neg-
atively with negatively-valenced emotions, resulting in our
interpretation of PC1 representing ‘‘emotional valence’’. Although
cients (with p-values in parentheses) for the models with all seven regressors. Total
the table). Total after model selection indicates number of regressors remaining after

Regret Relief logWinProb nearMiss

0.013 (0.23) 0.0067 (0.43) �0.32 (0.21) �3.3e�05�

(0.003**)

)
�0.0038 (0.75) �0.0039

(0.67)
0.19 (0.52) 4.4e�06 (0.73)

)
0.0014 (0.89) �0.0030

(0.72)
0.022 (0.93) 4.7e�06 (0.69)

)
0.033� (0.002**) 0.016

(0.052.)
�1.66�

(<0.001***)
3.9e�05 (0.80)

)
0.0051 (0.59) �0.0014

(0.85)
0.016 (0.95) �5.9e�07 (0.96)

13) 0.0031 (0.26) �0.0001
(0.95)

0.056 (0.46) 5.2e�06 (0.47)

0.010 (0.28) 0.0089�

(0.25)
�0.25 (0.31) �2.0e�05 (0.21)

)
�0.013 (0.21) �0.0065

(0.44)
0.14 (0.58) �2.1e�06 (0.88)

1 0 1 1
) 2 surprise

content
1 content 1 surprise 1 happy



Table A4
Results of the Principal Component Analysis. The top half shows the loadings of the various Principal Components (PCs) on the emotions. The values shown indicate the loading of
a particular PC on a particular emotion. Missing values were non-significant (p > .05) loadings. The bottom half of the table shows the standard deviation and the proportion of
total variance explained by each PC.

Loadings PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Happy 0.473 �0.126 0.121 0.250 0.260 0.775 0.112
Sad �0.394 �0.260 �0.127 0.181 �0.654 0.309 0.445
Anger �0.289 �0.337 0.451 0.115 �0.730 0.215
Surprise 0.202 �0.745 0.520 �0.290 �0.199
Disgust �0.243 �0.308 �0.127 0.320 0.507 �0.226 0.219 �0.609
Fear �0.151 �0.103 0.259 0.316 �0.174 0.451 0.750
Content 0.409 �0.340 �0.808 �0.216
Disappointment �0.515 �0.125 �0.113 �0.633 0.360 0.406

Standard deviation 4.68 2.42 1.91 1.39 1.15 1.06 0.84 0.77
Proportion of variance explained 0.591 0.158 0.098 0.052 0.035 0.030 0.019 0.016
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the second PC explains much less (15.8%) of the variance, analyzing
this does provide some insight. The second PC loads in the same
direction with all the emotions; hence we interpret it to be track-
ing the magnitude of all the emotions. Note that in Table A4, the
loadings of the second PC are all negative; however, the sign of a
PC is arbitrary—what is relevant are the relative signs of the differ-
ent loadings. Thus, we might interpret PC2 as being proportional to
‘‘emotional arousal’’ (or PC2 as ‘‘negative emotional arousal’’).
Subsequent PCs explain less than 10% of the variance.
Appendix B. Derivation of the multi-cue combination equation

Recall that in our model (Fig. 2), we assume that outcome o
causes emotion e, and emotion causes facial expressions f. If we
treat this model as a Bayesian network, we can factor the network
to get the probability of observing a certain combination of vari-
ables (o, e, f) into:

Pðo; e; fÞ ¼ PðfjeÞPðejoÞPðoÞ:

W e are interested in inferring e given o and f, P(e|o, f). Using the
identity that:

PðAjBÞ ¼ PðA;BÞ
PðBÞ ;

we can write the desired quantity as:

Pðejo; fÞ ¼ Pðo; e; fÞ
Pðo; fÞ ¼

PðfjeÞPðejoÞPðoÞ
Pðo; fÞ :

Using Bayes’ rule, we can rewrite P(f|e) in terms of P(e|f):

PðejfÞ ¼ PðfjeÞPðeÞ
PðfÞ :

Making this substitution for P(f|e) and rearranging, we arrive at:

Pðejo; fÞ ¼ PðejfÞPðfÞ
PðeÞ

� �
PðejoÞPðoÞ

Pðo; fÞ ¼ PðejfÞPðejoÞ
PðeÞ

PðfÞPðoÞ
Pðo; fÞ

� �

The terms in the right-most parenthesis do not depend on e, and is a
constant for a fixed (o, f) combination. Thus, we arrive at the crucial
cue-integration equation:

Pðejo; fÞ / PðejfÞPðejoÞ
PðeÞ ;

where the joint-cue posterior P(e|o, f) is proportional to the individ-
ual (emotion|cue) probabilities P(e|f) and P(e|o), and normalized by
the prior probability of the emotion P(e).
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