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Abstract—Human emotions unfold over time, and more affective computing research has to prioritize capturing this crucial component
of real-world affect. Modeling dynamic emotional stimuli requires solving the twin challenges of time-series modeling and of collecting
high-quality time-series datasets. We begin by assessing the state-of-the-art in time-series emotion recognition, and we review
contemporary time-series approaches in affective computing, including discriminative and generative models. We then introduce the
first version of the Stanford Emotional Narratives Dataset (SENDv1): a set of rich, multimodal videos of self-paced, unscripted
emotional narratives, annotated for emotional valence over time. The complex narratives and naturalistic expressions in this dataset
provide a challenging test for contemporary time-series emotion recognition models. We demonstrate several baseline and
state-of-the-art modeling approaches on the SEND, including a Long Short-Term Memory model and a multimodal Variational
Recurrent Neural Network, which perform comparably to the human-benchmark. We end by discussing the implications for future
research in time-series affective computing.
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1 INTRODUCTION

EMOTIONS are an integral part of our everyday lives that
dynamically color our experiences. For example, John

may wake up feeling sad that he has to get out of his warm
bed, then happy when he checks his phone and receives a
nice email; and later frustrated when his bus to work arrives
twenty minutes late. Our emotions vary dynamically over
time, and are situated in the context of the day’s events and
our history of prior experiences [1], [2].

As we open our homes, hospitals, and offices to artificial
agents, our relationship with AI will become more personal.
In order for these artificial agents to successfully co-exist
with people, they will have to “understand” our thoughts
and emotions and react accordingly [3], [4]. The field of
affective computing has made exciting progress in this di-
rection, for instance, training artificial agents and algorithms
to recognize emotions from faces [5], paralinguistics (e.g.,
pitch, prosody) [6], body gestures [7], and language [8].
Newer approaches also involve integrating these types of
cues into multimodal judgments about the underlying affect
[9], [10].

A growing body of work in affective computing focuses
on capturing and modelling the dynamics of emotion as they
unfold over time—what we refer to as time-series emotion
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recognition. Specifically, we define time-series modeling as
taking in temporally continuous input data and producing
temporally continuous output, with an explicit consider-
ation of how information is propagated over time. For
instance, in order to engage in such inference, a social robot
in conversation with its user would have to take in a contin-
uous stream of sensor data, process them, and reason about
their user’s emotions over time, perhaps after every second
or after every sentence, as well as across many sentences in
the conversation and across multiple conversations [11].

Despite the progress that has been made in time-series
emotion recognition in the past decade, the field is still far
from affective robots that can understand human emotions
in daily life. What is needed to achieve this ambitious
goal? We suggest that the biggest barriers to overcome are
due to (1) the inherent difficulty of building computational
time-series models, and (2) the difficulty of collecting high-
quality datasets. To address this first gap, we conduct a re-
view covering different machine-learning-based approaches
to time-series modeling (Section 2). We begin by discussing
the most common time-series techniques in affective com-
puting: deep neural network models, part of a broader class
of discriminative models. We also cover generative time-series
approaches, which are comparatively less popular within
affective computing, but offer interesting modeling capabil-
ities and hold exciting potential for emotion understanding.

We turn next to discuss the second gap: Researchers
need high-quality time-series datasets on which to train
models. These are expensive to construct, in terms of
both the production of stimuli and the collection of time-
series annotations of emotion and affective labeling [12].
There are several existing time-series datasets that have
been used by the affective computing community, mostly
through the Audiovisual Emotion Challenges (AVEC), a
series of challenges held annually since 2011 [13]. AVEC
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is a large and collaborative multi-institutional effort that
involves collating, curating, and releasing datasets, and
has catalyzed much of the research in time-series affective
computing. Every AVEC challenge to date involves pro-
ducing time-series labels on a common dataset. The first
two challenges [13], [14] had researchers predict valence
over time on the SEMAINE dataset [15], which consists
of recordings of volunteers interacting with a “Sensitive
Artificial Listener”, an artificial agent programmed to re-
spond in emotional stereotypes (e.g., happy and outgoing,
or angry and confrontational [13]). The subsequent two
AVEC challenges [16], [17] asked for predictions of valence
and arousal on the AViD-Corpus, a series of recordings
of volunteers performing several tasks like reading aloud
storybook excerpts and describing the story behind a given
picture (as in the Thematic Appreciation Test). The fifth and
sixth challenges [18], [19] involved predicting valence and
arousal on the REmote COLlaborative and Affective inter-
actions database (RECOLA; [20]), which included pairs of
individuals collaborating on a task via remote conferencing.
Finally, the seventh and eighth challenges [21], [22] required
predictions of valence, arousal and likability ratings on the
Sentiment Analysis in the Wild (SEWA) dataset [23], which
also involved dyads discussing their views on a commercial
that both individuals viewed. Unlike the previous three
datasets, the SEWA dataset was collected “in the wild” using
participants’ personal webcams rather than in a controlled
lab environment. More recent challenges that involve pre-
dicting emotions or empathy over time include the 2018
OMG-Emotion [24] and the 2018 Affect-in-the-Wild chal-
lenge [25], both comprising collections of YouTube videos of
spontaneous emotion displays, and the 2019 OMG-Empathy
challenge, which had videos of a research volunteer lis-
tening to a confederate recount scripted emotional stories.
Finally, several relevant time-series datasets were also pub-
lished outside these challenges: The Belfast Induced Natu-
ral Emotion Database [26] contains 1,400 clips of research
volunteers performing tasks designed to elicit one of seven
emotions (e.g., disgust: reaching into a box and touching
cold spaghetti). The Affectiva-MIT Facial Expression Dataset
(AM-FED; [27]) contains 242 videos of people at home
watching an advertisement, and these videos were collected
using their webcams. The Acted-Facial-Expressions-in-the-
Wild–Valence-Arousal (AFEW-VA; [28]) database contains
600 video excerpts from movies1, annotated per-frame for
valence and arousal.

The range of datasets we mentioned does not span the
range of social interactions that arise in real life. In partic-
ular, previous datasets either tended to have a very con-
strained scope—such as interacting with the same agents or
confederates (SEMAINE, OMG-Empathy), doing a fixed set
of tasks (AViD, Belfast Induced Natural Emotion), or collab-
orating on a single task (RECOLA, SEWA)—or they tended
to be too unconstrained—the OMG-Emotion, Affect-in-the-
Wild, and AFEW-VA datasets contain emotion displays with
no shared context. To fill this gap, we aimed to design a
minimally-constrained context that is both ecologically-valid
and generalizable while still allowing for desired variability

1. Though we disagree that acted expressions are “in the wild”, as
they do not occur naturalistically.

in emotional content and emotional expression. We settled
on a context relevant to any conversational AI: first-person
narrated personally-meaningful emotional stories2. In this
manner, there is sufficient shared context in the dataset
across participants, as each responded to the same prompt,
as well as substantial inter-stimuli variability, especially in
the content of the stories, on which we can train naturalis-
tic emotion-recognition models. We call this new database
of annotated videos of unscripted autobiographical emo-
tional narratives the Stanford Emotional Narratives Dataset
(SEND), and introduce the first release in Section 3. In
Section 4 we report the results of several baseline and state-
of-the-art time-series modeling approaches on this dataset.

From this point onwards, we choose not to use “con-
tinuous” to describe the time-series nature of the models
or data. This is to avoid confusion with another potential
meaning of “continuous”, which is to produce graded or
dimensional outputs [11]. That is, instead of producing an
emotion classification (e.g. happy vs. sad vs. neutral) or a
binary judgment (e.g. high or low valence), such models
would predict a real-valued judgment on some interval or
ordinal scale [29]. We will stress here that the choice of a
dimensionally-continuous output is an orthogonal model-
ing decision from dealing with temporally-continuous data,
and hence we will not use “continuous” to avoid ambiguity.

In the rest of this paper, we provide a review of time-
series modeling, with a focus on affective computing (Sec-
tion 2). We then introduce a novel naturalistic multimodal
dataset consisting of unscripted emotional life stories (Sec-
tion 3). In Section 4, we describe implementations of sev-
eral baseline and state-of-the-art time-series approaches to
modeling this dataset, and discuss the results in light of the
modeling assumptions. Finally, we end with a discussion
of how the field can extend these ideas to problems such
as deploying these models in physical robots, and building
personalized and longitudinal affective computers that may
interact with an individual over many sessions, potentially
over a lifespan.

2 TIME-SERIES MODELS

In this section, we provide an overview of contemporary
time-series approaches in affective computing. We do not
cover linear models, such as autoregressive or moving av-
erage models traditionally used in econometrics and other
fields: Rather, we focus on machine learning models that are
more amenable to high-dimensional input data.

We use Xk
t to denote the vector of input features for

sequence k at time t. This could be a vector of facial
expression features or even multimodal features. We use
Y kt to denote the corresponding vector of outputs at time
t, such as categorical labels of emotion classes or real-
valued scores or probabilities. We use Xk

t1:t2 and Y kt1:t2 to
denote a series of these inputs and outputs from times
t1 to t2, inclusive. Given n paired training sequences
{
(
Xk

1:Tk
, Y k1:Tk

)
, 1 ≤ k ≤ n} where Tk is the final time

point of sequence k, the goal is to train a model that can
predict the sequence of outputs Y j1:Tj

given a new input

2. We note that one of the tasks in AViD also had participants tell
personal stories, but the topics were assigned to the participant: “best
present” and “sad event from childhood”.
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Fig. 1. Illustration of two common time-series models. We use conven-
tional Bayesian Network notation, where circles represent random vari-
ables, shaded shapes represent observable quantities, and unshaded
shapes represent latent quantities. We also use diamonds to represent
deterministic values computed from random variables. (a) A popular
discriminative time-series model, the Recurrent Neural Network (RNN).
We use dashed lines to represent deterministic computations. Inputs
Xt (e.g., emotional expressions) are mapped onto hidden states ht

to produce output labels Yt (emotion labels), and there is a recur-
rency between consecutive hidden states (Eqn 1). The discriminative
approach finds the function that best discriminates the outputs given the
inputs, modeling P (Y |X). Long Short-Term Memory (LSTM) networks,
are variants of RNNs where the hidden layers also includes “memory”
units that allow longer-range information dependencies. (b) A common
generative time-series model, the Hidden Markov Model (HMM). Solid
arrows represent causal influence. In the generative approach, there
is some hidden (emotional) state zt, which “causes” people to display
emotional expressions Xt and also “causes” observers to rate these as
certain emotional states Yt. The goal of the generative approach is to
model the joint distribution P (X,Y ), in the case of the HMM, by invoking
and marginalizing out latent variables P (X,Y ) =

∑
z P (X,Y |z)P (z).

sequence Xj
1:Tj

, for some j > n. Without loss of generality,
this new predicted sequence could also be an extension of a
previously-observed sequence.

2.1 Discriminative Models

Given a set of emotion outputs Yt and a set of input features
Xt, one approach is to directly model how we can predict
the output labels from the input features. Such discriminative
models [30] are widely used in machine learning for both
classification (e.g., predicting an emotion category) and
regression problems (e.g., predicting a real-valued num-
ber). Linear and Logistic regression, the Support Vector
Machine/Support Vector Regression [31], Random Forest
Classifiers [32] and Deep Neural Networks like Convolu-
tional Neural Networks [33], are amongst the most popu-
lar discriminative machine-learning models applied within
(non-time-series) affective computing [9], [10].

A vanilla (standard) feed-forward neural network trans-
forms inputs X into outputs Y via nonlinear transforma-
tions through intermediate, hidden layer(s) h. The most
straightforward way to extend feed-forward neural net-
works to model time-series data is to allow the hidden layer
at one time point to influence the hidden layer at subsequent
time points. Adding such a “recurrency” between hidden
states results in an architecture known as the Recurrent
Neural Network (RNN) [34], shown in Fig. 1a. An RNN is a
neural network in which the hidden state at time ht depends
on the input features at that time Xt and the hidden state
at the previous time-point ht−1, via some function f with
parameters θ. The hidden states subsequently predict the
outputs via g with parameters φ:

ht = fθ (Xt, ht−1)

Yt = gφ (ht) (1)

In common parameterizations, fθ and gφ return a linear
combination of their arguments filtered through a non-
linear activation function (e.g., the hyperbolic tangent, the
sigmoid, the softmax, or the Rectified Linear Unit (ReLU)
functions). An example of a common formulation is:

ht = tanh(WX ·Xt +Wh · ht−1);
Yt = softmax(WY · ht) (2)

The weight matrices WX , Wh, and WY are shared across all
time steps and learnt via stochastic gradient descent on the
backpropagation of errors.

One limitation of vanilla RNNs is that they do not
readily capture long-range dependencies. Hochreiter and
Schmidhuber [35] proposed adding memory units, or cells,
within an RNN, which are able to “remember” informa-
tion over arbitrarily-long intervals. These Long Short-Term
Memory (LSTM) networks have already become one of the
most popular variants of the RNN, and we illustrate one
variant in detail in Section 4.4.

Many researchers have since used RNNs and their LSTM
variants to recognize emotion from speech and from video.
[36], [37], [38] and [25] all used a Convolutional Neural Net-
work to learn hidden layer features from individual video
frames, along with a recurrency between hidden layers at
consecutive times—thus, combining the time-independent
CNN with a RNN. Many others have used LSTMs to
recognize emotions from video data. [39], [40] and [41]
were some of the earlier papers that worked on compar-
ing multimodal LSTMs with Support Vector Regressions
and other approaches for valence and arousal classification
recognition on the SEMAINE dataset. This subsequently
led to a surge of interest in applying LSTMs, especially
to time-series emotion recognition on the AVEC 2015 [42],
[43], AVEC 2017 [44], [45], AVEC 2018 [46], and OMG-
Empathy 2019 [47] challenges. Other noteworthy examples
are [48], who investigated bidirectional LSTMs (where there
is another recurrence that goes backwards in time), [49]
who combined neural attention mechanisms with LSTMs,
and [50] who built an LSTM with electroencephalography
(EEG) input. These papers have collectively found that
RNNs/LSTMs are a powerful model for time-series emo-
tion recognition, whether they rely on extracted low-level
features, or combined with features extracted using CNNs.

Discriminative approaches are, by and large, the most
popular type of time-series approaches, because they pro-
vide a flexible approach that makes little assumptions about
the nature of the data. At their heart, these approaches
perform excellent pattern recognition, and find the best
nonlinear functions that maps the input behavioral features
to the output emotion via minimizing the error of the
predictions of the model (also called the loss function). For
tasks like emotion recognition from faces, deep approaches
like Convolutional Neural Networks are by far the best per-
forming state-of-the-art. One drawback, however of making
less structural assumptions about the data is that these
discriminative approaches, especially deep neural network
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approaches like LSTMs, tend to require larger amounts of
data to learn and perform well.

There is another important modeling decision for such
models: how to deal with asynchronous inputs. Multimodal
time-series input often come in at different sampling fre-
quencies, and discriminative approaches require some kind
of binning to synchronize them [51], [52]. One popular
method (and the one that we use in this paper) is feature fu-
sion, also called early fusion, where the input modalities are
oversampled, undersampled, or otherwise averaged, to a
common sampling rate. This allows the multimodal features
to be concatenated into a single feature vector within a given
time window, to be fed into a model [37], [42], [43]. A second
way to achieve such “synchronization” is decision fusion
(or late fusion): This involves fitting a separate time-series
model to each modality, operating at their own sampling
frequencies. These individual models are then connected
later in the computation to predict outputs [44], [53].

2.2 Generative Models

A second class of time-series approaches instead focuses on
modeling the causal structure behind the generation of the
data [3], [54]. As we highlighted in the opening example,
emotions dynamically vary over time, and cause behavior
like emotional expressions. Thus, if we took a modeling
approach that is more sensitive to the underlying emotional
phenomena, we may be interested in explicitly writing out
how, say, the emotions vary over time (Yt→Yt+1), and how
emotions cause emotional expressions (Yt→Xt). Generative
models offer this flexibility along with their own share
of modeling assumptions and challenges. More generally,
generative models aim to model the joint distribution of the
observed data, both the inputs X and the outputs Y , or
P (X,Y ). Indeed, the parameters in generative models are
fit by maximizing the (log-)likelihood of the data under the
model. By contrast, the discriminative models described in
the previous subsection directly model the outputs given
the features P (Y |X), and are often trained by minimizing
some loss function, which does not correspond directly to
likelihood (see [30] for more discussion).

Let us illustrate this with a classic time-series generative
model, the Hidden Markov Model (Fig. 1b). In this model,
we posit that there is a latent (unobservable) variable zt.
This zt is a discrete, categorical variable (e.g., a discrete
emotion category like happy or sad): it could also be some
unknown “state of the world” that the modeller may be
agnostic about labeling. First, the latent variable at the
current time step zt “causes” both the input features Xt and
the output labels Yt via an emission function or emission
model zt → (Yt;Xt). The model’s emission probabilities
encode how observations are “emitted” from the hidden
states. Second, the latent variable at the current time step zt
changes at the next time step zt+1 via a transition function
zt→ zt+1 with transition probabilities governing how one
hidden state may transition to another. The Xt’s and the
Yt’s are only connected via the zt’s, and each zt is only
influenced by the z at the preceding time-point.

The HMM allows one to set priors on both the transition
and emission models. For example, one might have a theory
that emotions tend to be “sticky” over the time-scale of the

time steps [55], so the emotional state zt would likely be
similar to the preceding state zt−1. Alternatively, emotion
A may be more likely to precede emotion B than emotion
C [56]: These could all be set in the transition model via
weights in a multinomial distribution. These priors are
updated after observing the data. More generally, we can
define parameterized distributions, and find the parameters
θ that maximize the probability of the data under the model:

zt ∼ Pθ(zt|zt−1)
Xt ∼ Pθ(Xt|zt)
Yt ∼ Pθ(Yt|zt)
θ∗ = argmax

θ
Pθ(X1, . . . , XT , Y1, . . . , YT ) (3)

Hidden Markov Models have been used for many years
to recognize time-series emotions, especially from speech.
[57], [58] and [59] all explored using HMMs to classify
speech into discrete emotion categories. [60] did a more sys-
tematic investigation of how various parameters of HMMs
(e.g. number of states or mixtures per state, input lengths)
impact their performance at recognizing emotions in speech.
The latent variable in a HMM can also capture different
types of variability: for example, emotion dynamics within
an utterance, versus emotion dynamics within a conversa-
tion across multiple utterances. [61] modelled exactly these
two levels of emotion dynamics using a HMM with two
hierarchical layers of latent variables. [62] also applied a
multilevel HMM to recognize emotions from sequences of
facial expressions. We implement a HMM as a baseline
model in Section 4.3.2

Researchers have also tried other similar generative
models to emotion recognition. For example, a Kalman Filter
is similar to a HMM with one main difference being that
the hidden states are real-valued instead of categorical: [63]
applied Multimodal Kalman Filters to recognize valence
and arousal over time on the AVEC 2016 challenge. Work-
ing on the same dataset, [64] applied a Gaussian Process
Regression model, which is similar to a Bayesian Regression
in that they assume a generative (Gaussian) process over
the parameters of a regression model. [53] also used a
Gaussian Process Regression, as well as a Gaussian Mixture
Regression (which assumes that the model parameters are a
result of a “mixture” or combination of multiple Gaussians)
to recognize valence and arousal from multimodal cues on
the AVEC2017 dataset.

Compared to discriminative approaches, generative ap-
proaches make more assumptions about the underlying
structure of the data, such as which variables “cause” which
other variables and how. These modeling assumptions pro-
vide an inductive bias [65], [66] that helps models to learn
faster with less data. Generative models also allow the
model to learn different sources of variability. For exam-
ple, by using hierarchical latent-variable models [61], we
could potentially learn general emotion-cue mappings (e.g.,
people tend to smile like so when happy) as well as person-
specific mappings (Bob tends to smile like that when happy).

One drawback, however, is that generative models tend
to make strong simplifying assumptions: HMMs for exam-
ple, are defined on discrete states with simple transition
functions, while Kalman filters similarly assume linear (and
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Gaussian) dynamics. This limits their ability to express com-
plicated models, compared to discriminative approaches
that can theoretically learn very complex functions. Genera-
tive models also tend to be more computationally expensive
to train. Inference in these models is often NP-hard and
tractable only in simple models, and so many models rely on
various approximate-inference algorithms. Thus, generative
models face a dilemma: They tend to either be (i) too
simple to sufficiently capture real-world variability, or (ii)
too complex for fast, efficient inference.

2.2.1 Integrating discriminative and generative approaches
Fortunately, this is becoming less of a problem. In recent
years, researchers have developed models that merge the
benefits of the discriminative and generative approaches,
for example, by using techniques from deep learning to
produce more efficient approximate-inference algorithms. In
non-time-series domains, the Variational Autoencoder [67]
has become a popular and flexible deep generative model—
a generative model parameterized by neural networks, and
where inference in the model can be approximated by max-
imizing a variational lower bound on the log-likelihood of
the model. Variational inference [68], [69] thus approximates
the computationally-expensive inference problem by replac-
ing it with a less-computationally-expensive optimization
problem. Indeed, by parameterizing generative models with
neural networks, one could learn arbitrarily complex func-
tions linking the latent variables with the data. We recently
proposed [54] that such deep generative approaches allow
affective computing researchers to leverage the advantages
of both generative and discriminative approaches, and il-
lustrate with several (non-time-series) examples using VAEs
and their variants.

Within time-series modeling, there are a handful of
promising examples of such integration of deep and gen-
erative models. For example, using a Deep Markov Model
[70], [71], [72], one can parameterize the generative edges
in the generative model (e.g., the emission and transition
functions) using neural networks as in Eqn. 2. In another
example, [73] and [74] both introduced a latent variable into
an RNN to help it model different sources of variability (e.g.
inter-subject variability) in the data. Within affective com-
puting, [75] combined an LSTM and a Dynamic Bayesian
Network to extract word-level linguistic features for pre-
dicting valence and arousal.

We hope that in due course, these contemporary hybrid
techniques will improve by leveraging strengths of both
approaches, and subsequently be adopted within the af-
fective computing community. In Section 4.5, we present
an implementation of a modified Variational Recurrent
Neural Network [73] that combines deep and generative
approaches.

Finally, we end our review by mentioning one more
alternative class of models: event-based models such as
point-process models [76], [77], [78], [79], which aim to
model the time and intensity of events and their impact
on a dependent variable. Although event-based approaches
are not common within affective computing, one notable
and recent example is [80], who proposed an event-filter
model to predict valence and arousal over time from speech
events. In their model, a vocal event j, occuring at times

predicted by ϕj(t), produces an emotional “response” hj(t).
For example, if event j denotes laughter, then ϕj(t) captures
all the occurrences of laughter in the signal, and hj(t)
represents the change in emotional valence signalled by a
single laughter episode (perhaps, a sharp increase, followed
by some decay back to baseline). Then, the emotional signal
Y (t) is then proportional to the sum of the convolution
hj(t)

⊕
ϕj(t) across all events j. They tested their event-

filter model on the AVEC 2018 dataset, and it performed
better than the audio-channel-only baselines for the AVEC
2017 and 2018 challenges [80]. While we do not go further
into event-based models in this paper, we do think it offers
an alternative approach to modeling time-series emotions,
which should be explored more in future research. For
example, by contrast to the approach of recognizing emo-
tions from emotional expressions (which [80] still employ),
these event-based models could allow modeling emotions
as arising from the subjective appraisals of discrete events,
as in Appraisal Theory [1], [2].

3 THE STANFORD EMOTIONAL NARRATIVES
DATASET (SEND)
In order to build affective computers that can under-
stand human emotions in real life, we need high-quality
time-series datasets with naturalistic emotion expressions.
Here, we introduce the first version of the Stanford Emo-
tional Narratives Dataset (SENDv1). The SENDv1 con-
sists of video clips of people recounting important and
emotional life stories. These unscripted narratives cap-
ture spontaneous naturalistic emotional expressions as
well as complex semantic content. These stories also
show diverse emotional “trajectories”, and thus provide
a rich dataset for time-series modeling. Information re-
garding the SENDv1 is available at https://github.com/
StanfordSocialNeuroscienceLab/SEND.

We refined the experimental protocol [81] for the collec-
tion of the SENDv1 following our previous work [82], [83].
All experiments were approved by the Stanford University
Institutional Review Board. Participants (“targets”) were
recruited from a suburban community on the West Coast
of the United States. They were brought into the lab and
told to think about the three most positive and three most
negative events that they would feel comfortable sharing
in front of a video camera. Recording was self-paced: The
experimenter left the target alone in the room, and targets
were allowed to talk for as long as they wanted about each
event. After targets finished recording the videos, they were
asked to fill out several trait, personality, and demographic
surveys. During this time, the experimenter processed the
videos by transferring them from the camcorder onto the
computer and prepared the next part of the experiment.

After targets finished the surveys, they were then
showed each video that they recorded. While watching
each video, they were asked to rated how they felt as
they were telling their story. These valence ratings were
collected using a visual analog scale divided into a hundred
points, ranging from “Very Negative” (-1) to “Very Positive”
(+1). The ratings on the scale were sampled every 0.5s.
Many previous studies have used similar continuous rating
dials, scales, or joysticks [25], [84], [85], [86], [87] to provide
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continuous valence ratings of videos. Finally, after watching
all their videos and making ratings, targets were asked to
give consent for us to use the videos in future experiments.
The subset of video clips selected for the SENDv1 were all
consented for research use.

Video and audio were captured using a consumer-
grade camcorder (Canon VIXIA HF R62) recording in high-
definition at 30 frames per second, although videos were
later downsized to 480x270 before collecting observer rat-
ings and analysis. We specifically designed the video collec-
tion to be as “clean” as possible, both for people who watch
the videos and for machine learning models: Targets did not
have to wear any headphones, and only a minority of videos
had visible physiological sensors3. Targets were seated in
front of a black backdrop to standardize the background and
remove any distracting objects. We positioned the camera to
capture targets’ faces head-on, and down to their shoulders
(See Fig. 3).

We selected a subset of 193 clips containing 49 unique
targets4. This set was chosen such that: (i) the target’s face
was always in the camera, (ii) the clips did not contain
sensitive content (e.g. mental health, suicide), and (iii) the
clips were emotional, and had some narrative flow (rather
than stream of consciousness or rambling). The clips were
also cropped for length, such that the final clips lasted
on average 2 minutes 15 seconds (for a total of 7 hrs 15
mins). Targets in this subset talked about positive events
like receiving a puppy as a surprise present (Fig. 2, top),
successfully putting on a theatrical production, or going
on a memorable vacation; to negative events like getting
injured during a tournament season (Fig. 2, middle), wit-
nessing parents fighting, or having a loved one pass away.
Targets also described events that had both strongly positive
and negative components, which we loosely term “mixed”
events, such as a long drawn-out romantic breakup with
both ups and downs (Fig. 2, bottom). These unscripted
narratives capture natural variation in emotion expression
as the target is speaking, which is crucial in training affective
computing models. This dataset contains a rich sampling
of emotional life events that people encounter in day-to-
day life. We should also mention that, given its nature, we
can keep building upon this dataset; We plan to supplement
future versions of the SEND to encompass a wider variety
of events, as well as targets from different racial, cultural,
demographic, and socio-economic backgrounds.

3.1 Independent Observer Ratings
As described above, we collected targets’ self-reported va-
lence ratings as labels for the videos. For the purposes
of building an affective computer to recognize emotions,
however, targets have access to more information than a
computer could have—for example, targets know how the
story is going to end even before the story begins, and
targets have access to internal (visceral) cues of emotion. By

3. We also collected physiological measurements (heart-rate and gal-
vanic skin response) using a Biopac MP150, although we do not analyze
these in this paper. In some videos, the heart-rate sensors placed just
under the collarbone were visible.

4. Targets were 33% White or Caucasian, 12% East Asian, 8% His-
panic or Latino/a, 6% South Asian, 4% Black or African American, and
2% Middle Eastern. 35% reported being of mixed heritage or “Other”.

TAC time-series

161_1

117_4

120_1

Fig. 2. Three example videos from the SENDv1. We collected indepen-
dent observer ratings of the target’s valence over time, which ranged
from Very Negative (-1) to Very Positive (+1). Each colored line rep-
resents an individual observer’s rating, and the black line represents
the Evaluator Weighted Estimator of the observer ratings, along with its
standard deviation. Top: A positive video, from our Test set, describing
the buildup to receiving a puppy as a present. Middle: A negative video,
from our Validation set, describing getting injured during a tournament
season. Bottom: A mixed video, with both positive and negative seg-
ments, from our Training set, describing a drawn-out romantic breakup.

contrast, an affective computer only has access to observ-
able, externally-perceivable cues. Because of this consider-
ation, we decided to additionally collect a large amount of
independent ratings by recruiting a separate group of par-
ticipants (“observers”). These independent ratings offer a
different type of rating: that of externally-perceived emotions.
Arguably, externally-perceived emotions—done with only
externally-observable cues and without hidden information
such as memory or subjective feelings—is the goal of an
affective computer. In this section, we describe the collection
of the independent observer ratings, and which we use in
the remainder of the paper. We will release both the tar-
gets’ self-reported ratings and the observer ratings with the
SEND, and researchers can choose which to use depending
on their scientific hypotheses, but we do not discuss the
target ratings in the remainder of the paper.

We recruited participants (“observers”) on Amazon Me-
chanical Turk to watch these videos clips and provide rat-
ings of how the target in the video felt along the valence
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Fig. 3. Paradigm used to collect observer ratings. Observers used a
visual analog scale from “Very Negative” to “Very Positive”, and dragged
the slider as the video was playing, to rate the target’s valence. Videos
captured targets’ faces and shoulders against a clean, black backdrop.

dimension. Observers saw each video along with a contin-
uous sliding scale underneath (Fig. 3), and were asked to
rate, using their mouse, how they thought the target was
feeling as they were speaking in the video (and not how the
target may have been feeling during the event they were
describing). Observers were reminded to move the scale
as the target is speaking to continually reflect the target’s
emotions. The analog scale was divided into 100 points and
sampled every 0.5s.

Due to the complex nature of the stimuli, we aimed to get
a large number of ratings (>20) per video for greater relia-
bility. Hence, we recruited 700 observers, who each watched
8 videos. To ensure that observers were paying attention,
we included two comprehension checks per video, which
were True/False questions pertaining to the content of the
video. Overall, observers got both attention check questions
correct on 82% of trials, one question correct on 15% of trials,
and zero of two correct only on 2% of trials. We excluded
trials on which observers answered zero or one questions
correct, as well as on trials on which observers made no
rating changes, resulting in a total of 3955 rating vectors, or
an average of 20.5 rating vectors per video.

To calculate the “gold-standard” valence labels, we used
the Evaluator Weighted Estimator (EWE [88]), which pro-
vides an elegant formulation for weighting each observer’s
ratings by how well they correlate with the (unweighted)
average of the ratings. Specifically, if observer j provides
rating rj1:Tk

for video k of length Tk, and if the correspond-
ing averaged rating of all raters is r1:Tk

, then we can define
a weight for observer j (on video k), wj , as the correlation
between rj1:Tk

and r1:Tk
. The EWE for video k is then given

by a weighted sum of the individual ratings:

wj = Correlation(rj1:Tk
, r1:Tk

) (4)

rEWE
t =

1∑
j w

j

∑
j

wjrjt (for 1 ≤ t ≤ Tk) (5)

3.2 Dataset Partitions
We divided the videos into three partitions: Training (60%
of the dataset, 114 videos from 29 targets, 4 hrs 20 mins
long), Validation (20%, 40 videos from 10 targets, 1 hr 29
mins long) and Test (20%, 39 videos from 10 targets, 1 hr
26 mins long) sets. See Table 1. These partitions were done
by target, so a particular target would only appear in one
of the three partitions; This forces our models to learn to
generalize to novel targets. We designed the partitions to
have the same: (i) ratio of female vs. male gender presen-
tation (χ2(4) = .02, p = .99, no gender non-conforming or
ambiguous individuals were part of the dataset), (ii) mean
video duration (F (2, 190) = .20, p = .82), and (iii) ratio of
positive/negative/mixed videos.

For the purposes of balancing the distribution of va-
lences among the partitions, we defined “positive” videos
as those having a mean EWE rating of more than 0.2 (on a
-1, Very Negative to 1, Very Positive scale). We similarly
defined “negative” videos as those having a mean EWE
rating of less than -0.2, and “mixed” videos as falling in
between. As the videos were chosen to have meaningful
emotional content, having a mean EWE around 0 suggests
that there were both positive and negative segments in the
video (See Fig. 2, bottom), rather than no emotional content.
These cutoff values (of -0.2, 0.2) were chosen after looking
at the distribution of mean EWE ratings, in Fig. 4. The three
partitions have a statistically similar ratio of positive to
negative to mixed videos (χ2(4) = .16, p = .99). Overall
across the whole dataset, there tends to be more positively-
valenced (39%) videos than mixed (28%) and negative
(33%) videos, although this is not statistically different from
a uniform split (χ2(2) = 3.8, p = .15).

Training Validation Test Total

# Targets 29 10 10 49
# Female (%) 18 (62%) 6 (60%) 6 (60%) 30 (61%)

Mean Age (SD) 24.8 (9.6) 23.2 (4.6) 21.1 (3.0) 23.7 (7.9)

# Videos 114 40 39 193
Total Length/s 15622 5337 5186 26145

Avg Length/s (SD) 137 (42) 133 (37) 133 (45) 135 (41)

# Pos. Vids (%) 46 (40%) 15 (38%) 15 (38%) 76 (39%)
# Neg. Vids (%) 37 (32%) 13 (33%) 13 (33%) 63 (33%)
# Mix. Vids (%) 31 (27%) 12 (30%) 11 (28%) 54 (28%)

TABLE 1
Summary statistics of the 60:20:20 Training/Validation/Test partitions.

3.3 Model Evaluation
We use the Concordance Correlation Coefficient (CCC [89])
as the metric to compare our models’ predictions for a time-
series video with the gold-standard ratings. The CCC has
been used in previous affective computing studies and chal-
lenges [19], [21]. Intuitively, the CCC captures the expected
discrepancy between the two vectors, compared to the ex-
pected discrepancy if the two vectors were uncorrelated.
The CCC for two time-series vectors X and Y is:

CCC (X,Y ) ≡ 2 Corr(X,Y )σXσY

σ2
X + σ2

Y + (µX − µY )2
(6)

where Corr(X,Y ) ≡ cov(X,Y )/(σXσY ) is the Pearson
correlation, and µ and σ denotes the mean and standard
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Fig. 4. Histogram of the mean EWE ratings (Eqn. 5) for each video.
The grey histogram at the back reflects the distribution across the entire
SENDv1, while the overlaid density distributions show the statistically-
similar distribution of valences across the three partitions. The vertical
dashed lines indicate our cutoffs for defining “positive”, “mixed”, and
“negative” videos.

deviation respectively. Like the Pearson correlation, the CCC
measures agreement: +1 means that the two time-series are
in perfect agreement and 0 means that they are uncorrelated.
The CCC also penalizes bias in the model’s predictions via
the (µX − µY )2 term in the denominator.

4 MODELING

In this section, we present several time-series approaches to
model valence ratings on the SENDv1. We implement:

• a baseline (non-time-series) discriminative model, a
Support Vector Regression (SVR)

• a baseline generative model, a Hidden Markov
Model (HMM)

• a state-of-the-art discriminative Long Short-Term
Memory (LSTM) model

• and a state-of-the-art (deep) generative Variational
Recurrent Neural Network (VRNN) model.

As is conventional practice, we train our models only on
the Training Set, and use the models’ performance on the
Validation set to choose model hyperparameters (e.g., learn-
ing rate). We then use these optimized settings to report
results on the Test set. In addition to reporting mean results,
we also report standard deviations (SD): This is to show the
variability in model performance across the different videos
in a particular partition of the dataset (e.g. mean ± SD
across all videos in the Test set). Although reporting SDs or
other statistics is not yet commonplace in Machine Learning,
we note that this is starting to change in recent years. The
code for our models, written in Python, can be found at:
https://github.com/desmond-ong/TAC-EA-model.

4.1 Human Benchmark
First, we wanted to establish how human observers perform
on this task. This serves two purposes: First, it gives readers
an intuition as to how difficult this task is. Second, it
provides a quantitative benchmark with which to compare
our modeling results in the next few sections.

We sought to calculate how well each individual ob-
server j’s rating tracks the “gold-standard” EWE (Eqn. 5),
but because the EWE rating contains observer j’s rating, we
calculated the CCC of j’s rating with an EWE that has j’s
rating subtracted out. If Jk denotes the set of observers for
video k (of length Tk), rj1:Tk

denotes observer j’s ratings and
rEWE
1:Tk
|Jk\j the EWE of all the other observers (minus j), then

the mean human CCC on video k is:

CCCk =
1

|Jk|
∑
j∈Jk

CCC
(
rj1:Tk

, rEWE
1:Tk
|Jk\j

)
(7)

where |Jk| is the number of observers for video k.
Using Eqn. 7, the mean and standard deviation of ob-

server CCC on the Training set was .53 ± .13, the mean
(and SD) observer CCC on the Validation set was .47± .15,
and finally, the mean (and SD) observer CCC on the Test set
was .50± .12.5

4.2 Feature Extraction
To facilitate comparison across the different model types, we
chose to extract features from all the modalities and combine
them into a multimodal input feature vector—This is also
known as feature fusion or early fusion.

Audio Features. We used openSMILE v2.3.0 [90] to
extract the extended GeMAPS (eGeMAPS) set of 88 parame-
ters recommended by [91]. Features were extracted for every
0.5-second window.

Text Features. We commissioned professional transcripts
from a third-party company: These transcriptions were done
manually with the aid of specialized annotation software
to start, pause, and rewind the videos, but no automatic
speech recognition software was used by the company.
After receiving the text transcripts, we then used forced
alignment6 to assign timestamps to individual words. We
used 300-dimensional GloVe word embeddings [92] as a
representation for each word. Features for each 5-second
time window were then computed by averaging the word
embeddings that occurred within each window.

Visual Features. We used the Emotient software by
iMotions7 to extract 20 Action Units [93] for each frame (30
per second).

To synchronize all three modalities with the ratings, all
features were resampled to a common time window of 0.5
seconds before being fed into our models.

4.3 Baselines
4.3.1 Support Vector Regression
Following recent dataset papers that perform time-series
valence prediction [23], [28], [94], we used Support Vector
Regression (SVR) with a linear kernel as a baseline. SVR
adapts the widely used Support Vector Machine (SVM) for
use in regression tasks [95], finding the hyperplane that

5. The human-benchmark Train Set CCCs are significantly higher
than those on the Validation Set (p=.03), but the human CCCs on
the Test Set are not significantly different from either the Train or the
Validation (p’s> .27). We do not think this is a problem with balancing;
if anything, it means our experiments are more conservative as the
Validation videos may be more challenging, even for humans.

6. https://github.com/ucbvislab/p2fa-vislab
7. https://imotions.com/emotient/
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best explains the data while allowing for a certain margin
of error. Ratings were predicted from the inputs for each
time window separately, and then smoothed using a simple
moving average across 5 time windows (2.5s). We used the
scikit-learn implementation of SVR [96], and we cross-
validated over multiple margins of error (0.05, 0.1, 0.15, 0.2)
and error penalty terms (10−3, 3× 10−3, ..., 3× 102, 103).

As we might expect, the baseline SVR does not do so well
on this task, with the maximum performance it achieves
is a CCC of .07 ± .13 on the Validation Set and .08 ±
.16 on the Test Set (see Table 2 for a summary of all the
model results). This poor performance is likely due to two
reasons: First, SVR is not designed to handle time-series. We
treated each time-step as an independent example, which is
a poor assumption in such correlated video data. Second,
given the complexity of our input features, using SVR with
a linear kernel is unlikely to capture the relevant similarities
between different input examples. This amounts to using a
linear model on a non-linear regression problem, leading to
poor prediction results.

4.3.2 Hidden Markov Models
Hidden Markov Models (HMMs) have been widely used for
emotion recognition from speech [57], facial [97], [98], and
audio-visual data [99], [100]. In standard HMMs, the hidden
states have to be discrete, so we adopted the approach
in [100] and discretized the valence ratings into multiple
bins of equal sizes, treating each valence bin as the hidden
emotional state to be recognized. We used multivariate
Gaussian mixture models for the emission distributions of
our HMM, with diagonal covariances for each Gaussian
component. We fit the HMM via supervised learning us-
ing the pomegranate library [101], cross validating over
the number of valence bins (2, 4, or 8) and the number
of Gaussian components (1, 2, or 3). Valence predictions
were computed by using the Viterbi algorithm to infer the
most likely sequence of valence bins, followed by a simple
moving average across every 5 time-steps.

Like SVR, the HMM does not perform well either,
achieving a maximum performance of .04 ± .11 on the
Validation Set and .04 ± .15 on the Test Set. Although the
HMM is a time-series model, it is still unable to perform well
given the complexity of the current dataset. This is likely
due to the limited capacity of the model, which assumes that
the input features are not correlated within each Gaussian
component (i.e. diagonal covariance), and that each bin of
valence ratings corresponds to only one underlying hidden
state. We provide the SVR and HMM model results as
baselines and to facilitate comparison with previous papers.
We move next to discussing two state-of-the-art models.

4.4 Using Long Short-Term Memory Networks

As we noted, the Long Short-Term Memory (LSTM) deep
neural network is one of the most popular and successful
discriminative approaches in time-series emotion recogni-
tion. It provides a flexible framework that can learn general
nonlinear functions from multimodal input features (Xt)
to an emotion output (Yt, in our case, valence). Here, we
implement an Encoder-Decoder LSTM, which consists of
two LSTM layers, with a local attention layer in between

ht-1

Xt

ht

Encoder LSTM

Xt-1

Encoder LSTM

Yt-1 Yt

Decoder LSTMDecoder LSTM

ctct-1

...

TAC time-series

Fig. 5. Illustration of the Encoder-Decoder LSTM model. Xt is a mul-
timodal feature vector, and Yt is a real-valued valence rating. The first
layer puts Xt through an LSTM to encode a hidden layer representation
ht. The local attention layer of length l computes a set of l attention
weights (Eqn. 9), and computes the context variable ct as a linear
combination of the hidden units (Eqn. 10). The context vector ct is then
fed into a second, LSTM decoder layer to provide the final output Yt.

(Fig. 5). This encoder-decoder architecture has previously
been applied to predict sequences in other domains (e.g.,
machine translation [102]).

First, the “encoder” LSTM layer takes in the input se-
quence X1, . . . , Xt and computes hidden states h1, . . . , ht.
Next, we compute a local attention layer [103], [104] using
a single-hidden-layer neural network (or Multilayer Percep-
tron, MLP) with an attention window of length l. This means
that, at time t, we compute a set of l attention weights which
are then used to weight the hidden states at the current and
previous l − 1 timesteps, to give a context vector ct:

Encoder Layer: ht = LSTM(X1:t) (8)
{at−l+1, . . . , at} = MLP(Xt) (9)

ct =
l−1∑
j=0

at−jht−j (10)

Finally, we added a second “decoder” LSTM to predict
the output Yt, from the current context vector ct and the
previous time-step Yt−1. During training, we used “teacher-
forcing” [34] with a ratio of 50%, which means that with 50%
probability on the training cases, the decoder LSTM was fed
the actual value at the previous time step Yt−1, while on the
remainder, the LSTM used its predictions on the previous
time-step Ŷt−1.

Decoder Layer: Ŷt = LSTM(ct, Ŷt−1) (11)

We used the mean squared error of the predictions (i.e.,
MSE(Ŷ1:T , Y1:T ) =

∑T
t=1(Ŷt − Yt)2) as the loss function to

be minimized. We trained the LSTM with an initial dropout
layer (on the input embeddings) of 0.1, which helps to
regularize the learnt weights and help prevent overfitting
[105], and with an attention window of l = 3.

4.4.1 LSTM Results
Our LSTM performed the best using the Text features,
achieving a CCC of .38 ± .29 on the Validation set and
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Fig. 6. Graphical structure of the multimodal Variational RNN (VRNN),
adapted from [73], [106]. The hidden state at the preceding time step
ht−1 parameterizes all of the distributions at the current time step t.
First, we estimate the posterior distribution Q(zt|Xt, Yt;ht−1) given the
true inputs and outputs Xt and Yt, and sample zt from the posterior.
Then we sample X̂t and Ŷt from the generating distribution P (Xt, Yt|zt)
to compute a reconstruction loss. Finally, we compute the recurrence to
ht using the sampled zt and the observed Xt, Yt (replacing Xt with X̂t

only if Xt is missing, and similarly for Ŷt). We use a solid line to indicate
“causal flow” (as in a graphical model), and dashed lines to indicate a
deterministic computation.

.40 ± .32 on the Test set (Table 2). Our LSTM model also
does well with the Text and Visual features on the Test set,
with a similar CCC of .40 ± .33, although it did not do
well for this modality combination on the Validation set.
As expected, our LSTM performs significantly better than
the baseline SVR and HMM models on the Test set, across
all modalities (linear mixed-effect models regressing CCC
on model, with random intercepts by video and modality;
LSTM−SVR, t = 9.78, p < .001; LSTM−HMM, t = 10.1,
p < .001), and also comparing the best-performing best-
performing LSTM (Text-only, and Text-Visual) with the best-
performing SVR and HMM (paired t-tests; all p’s< .001).

When we compare our LSTM model results with the
human benchmark, we find that, on the Test Set, the per-
formance of the LSTM with Text-only features is not signif-
icantly different from the human benchmark (paired t-test:
t(38) = 1.87, p = .07). This is also true for the LSTM with
Text and Visual features (t(38) = 1.79, p = .08).

One limitation of our current LSTM models is that we
do not leverage the ability of neural networks to extract
features directly from the raw data. For example, many
previous models use a CNN on the raw images to extract
visual features (e.g., [36], [37]), rather than calculating visual
features separately as we did here. The weights of such a
CNN will be modified during training, which “optimizes”
the feature extraction process for this particular task. We
chose not to do that here to have the same input features
across all models to facilitate comparison, although we think
that learning feature extraction from raw input will likely
improve the performance of the LSTM models.

4.5 Using Variational Recurrent Neural Networks
The LSTM is excellent at learning mappings from the in-
puts Xt to the outputs Yt, but otherwise does not encode
any other assumptions about the data. By contrast, adding
latent variables to the model might allow us to account
for implicit sources of variation (e.g., speaker-dependent

attributes, differences in narrative style or theme, or inter-
video differences), which might help us to generalize better
across different videos. Thus, we wanted to see if combining
a generative component into an RNN may result in better
performance on the valence prediction task. One way to do
this is to build a generative model of the inputs Xt and
the outputs Yt, modeling them as generated from some
lower-dimensional latent state zt. By training the model to
accurately predict both Xt and Yt, it could then automat-
ically learn a good latent representation zt that captures
the aforementioned sources of variation. If the model learns
to map particular dimensions of zt onto these sources of
variation, it could then go on to learn that some of them
are irrelevant for predicting emotion, thereby allowing the
model to generalize well across videos.

With this rationale, we implemented a multimodal Vari-
ational Recurrent Neural Network (VRNN; Fig. 6). We
adapted the VRNN, proposed by [73], to handle multiple
modalities, by using a method from the (non-time-series)
Multimodal Variational Autoencoder [106]. In our model, at
each time step, we sample the latent variable zt from the
approximate posterior Q(zt|Xt, Yt), which is parameterized
by the hidden state at the previous time step ht−1, with
parameters µ, σ learnt using deep networks. We follow [106]
and assume a Gaussian prior P (zt) on the latent space,
as well as Gaussian posteriors Q(zt|Xt,m) for each input
modality Xt,m (1 ≤ m ≤ M where M is the number of
modalities); the full posterior Q(zt|Xt, Yt) is then a product
of Gaussians (itself a Gaussian).

zt ∼ Q(zt|Xt, Yt)

= P (zt) Q(zt|Yt)
∏M
m=1Q(zt|Xt,m) (12)

where P (zt) = N (µzt , σzt) ,

Q(zt|Yt) = N
(
µzt|Yt

, σzt|Yt

)
,

Q(zt|Xt,m) = N
(
µzt|Xt,m

, σzt|Xt,m

)
,

and µzt , σzt = MLP(ht−1),
µzt|Yt

, σzt|Yt
= MLP(Yt, ht−1),

µzt|Xt,m
, σzt|Xt,m

= MLP(Xt,m, ht−1)

Next, we reconstruct the multimodal inputs X̂t and outputs
Ŷt from the sampled zt; these likelihood distributions are
also parameterized by hz−1. Finally, the recurrence occurs
by computing the next hidden state ht via a determinis-
tic computation from zt, Xt and Yt, parameterized by a
Multilayer Perceptron. In the event that there is a missing
input modality m at time t, we use the reconstruction X̂t,m

in place of the unobserved inputs Xt,m to compute ht.
Similarly, we replace Yt with Ŷt if the former is missing.

X̂t ∼ P (Xt|zt) = N (µXt
, σXt

) (13)

Ŷt ∼ P (Yt|zt) = N (µYt
, σYt

) (14)
ht = MLP(zt, Xt, Yt) (15)

where µXt
, σXt

= MLP(zt, ht−1)
µYt

, σYt
= MLP(zt, ht−1)

To train the VRNN, we maximize the Evidence Lower
Bound (ELBO) used in variational inference [68], [69],
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Model Modalities

A T V AT TV AV ATV

Validation CCC (Std. Dev.)

SVR .05 (.11) .07 (.15) .04 (.13) .07 (.13) .07 (.14) .04 (.11) .07 (.14)
HMM .03 (.09) .04 (.11) .04 (.15) .03 (.12) .04 (.12) .02 (.06) .01 (.11)
LSTM .10 (.30) .38 (.29) .12 (.30) .08 (.29) .28 (.30) .10 (.24) .14 (.29)
VRNN .11 (.26) .43 (.32) .11 (.24) .32 (.31) .24 (.30) .14 (.30) .17 (.26)
Human – – – – – – .47 (.15)

Test CCC (Std. Dev.)

SVR -.02 (.13) .08 (.16) -.01 (.13) .07 (.15) .06 (.14) -.01 (.11) .06 (.14)
HMM .02 (.07) .02 (.14) .01 (.18) .00 (.12) .04 (.15) .01 (.08) .01 (.11)
LSTM .14 (.28) .40 (.32) .17 (.32) .09 (.32) .40 (.33) .16 (.28) .15 (.23)
VRNN .15 (.23) .42 (.32) .14 (.25) .35 (.29) .30 (.32) .17 (.36) .24 (.37)
Human – – – – – – .50 (.12)

TABLE 2
Summary of model results. Modalities—A: Audio, T: Text, V: Visual.

Human: mean CCC between an individual human rater and the EWE of
all other human ratings (described in Section 4.1). For the LSTM and

VRNN, we indicate the best performing modality combinations in bold.

summed across all timesteps t:

∑T
t=1

[
EQ(zt|Xt,Yt) [α logP (Yt|zt)]

+ EQ(zt|Xt,Yt)

[∑M
m=1 λm logP (Xt,m|zt)

]
(16)

− β KL[Q(zt|Xt, Yt)||P (zt)]
]

Here, α, β, and λm are weights balancing the importance
of each ELBO term, and KL[Q||P ] is the Kullback-Leiber
divergence between distributions Q and P . By maximizing
the ELBO, the network simultaneously learns better generat-
ing distributions P (Yt|zt) and P (Xt|zt), while performing
regularization by ensuring that the approximate posterior
Q(zt|Xt, Yt) does not diverge too far from the prior P (zt).

During training, we gradually increase the weights α
and β from zero as we increase the number of epochs. This
allows the network to first learn how to reconstruct the
inputs Xt by improving P (Xt|zt), before eventually placing
more emphasis on both reconstructing the outputs Yt and
regularizing the network. We also scale each λm inversely
with the dimensions of each input modality m, ensuring
that reconstruction of that modality is not favored simply
because it has more feature dimensions.

4.5.1 VRNN Results

Overall, the VRNN well, performing the best with only Text
features, achieving a CCC of .43 ± .32 on the Validation
set and .42 ± .32 on the Test set. The performance of the
VRNN is not statistically different with the performance
of the LSTM, whether it is across all modalities (using a
linear mixed-effect models regressing CCC on model, with
random intercepts by video and modality, t = 1.50, p = .13)
or comparing only the best-performing modalities (LSTM-
TV vs. VRNN-T; paired t-test, p = .68). The performance of
the best-performing VRNN is also not significantly different
with the human benchmark (t(38) = 1.68, p = .10).

Compared to the LSTM models, the VRNN theoretically
models different sources of variability using the latent vari-
able zt. We predicted from our own qualitative impressions

of the SENDv1 dataset that being able to account for differ-
ent sources of variability would be critical to performance.
However, although the VRNN does well, it did not do
significantly better than the LSTM.

5 DISCUSSION

In order to build artificial intelligence that understands
human emotions, researchers must overcome the challenge
of modeling emotion dynamics. In this paper, we address
one piece of that puzzle—time-series emotion recognition—
and offer a comprehensive review of contemporary time-
series modeling approaches that are used or can be used
productively in affective computing. We present a rich nat-
uralistic dataset, the first version of the Stanford Emotional
Narratives Dataset (SENDv1), designed precisely for mul-
timodal, time-series emotion recognition. Finally, we report
the results of several baseline and state-of-the-art models on
the SEND, as a starting point for future work.

5.1 The first version of the SEND

A significant barrier to emotion-sensing AI is the lack of
large, high-quality corpora for model training. To accom-
plish real-time emotion inference on real-world situations
(“in the wild”), affective computing models need to first be
trained on dynamic, multimodal, and naturalistic stimuli,
but which are also well-controlled, i.e., captured in context,
with a high signal-to-noise ratio. Our new corpus, the
SENDv1, attempts to provide such a dataset. The paradigm
was designed to create a minimally-constraining context,
limiting undesirable noise, while still allowing for the natu-
ralistic unfolding of emotion expression over time.

Despite being a modestly-sized corpus, with N=193
video clips in the current version, the SENDv1 holds several
advantages over readily available video stimuli such as
excerpts from movies or YouTube videos. First, film clips or
any acted media are staged, and therefore, not naturalistic.
Such media do not capture genuine personal experience
but instead, the actors’ expectations of experience, which are
often exaggerated [107], [108]. Though millions of “in-the-
wild” clips made by amateurs can be found on livestreams,
video-logs, or websites like YouTube, this great quantity
comes with a significant trade-off in quality. Videos may
have poor lighting and audio, or exhibit large variations in
framing and pose; and it is not always possible to know if
the emotional expressions were staged or exaggerated.

Furthermore, corpora collected or scraped from the In-
ternet often lack a “ground truth”; That is, the person ex-
pressing emotion in the clip did not provide self-reports as
to what they were feeling. Even if these videos are annotated
by online volunteers, such reports would not capture the
“ground truth” with regard to the personal experience of
the person in the clip. Although we report results trained
on the EWE calculated from independent observers, our
dataset also contains self-reported ratings by the target in
the video, as well as physiological measurements, trait,
and demographic information, which may prove useful in
building individualized models.

The SENDv1 data set has a high signal-to-noise ratio
that is desirable for training machine learning models. We
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Fig. 7. Sample predictions of the best-performing model-modality combinations (LSTM: Text + Visual features; VRNN: Text features) compared with
the EWE ratings (dashed black line). All plots shown are on videos from the Test set. (a) is the same video as Fig. 2, top.

minimize undesirable variance in background noise and
lighting by having only one person speaking in front of
a black background with no distractions, while increasing
desirable variance such as: (a) the diversity of targets in the
stimuli with respect to gender identity, race and ethnicity,
communicative style, and age; and (b) the diversity of content,
with respect to the topics, places, people, and events dis-
cussed in the videos. Limiting videos to a single storyteller
allowed us to study naturalistic expression with minimal
noise. This approach is ideal for “personal assistant” AI or
AI for therapy applications, and also serves as a benchmark
from which to build models that can understand dialogue
between two or more people. It is still important for af-
fective computers to tackle truly “in-the-wild” scenarios:
this dataset focuses on distilling and focusing on some
complexities (diversity of content and targets) over others
(different contexts, arbitrary lighting and views).

We intend to extend the SEND in the following ways:
First, we intend to augment the dataset with more videos,
via a growing, international team of collaborators, increas-
ing the diversity in age, ethnic, and other demographic
variables, and even collecting content in more diverse lan-
guages [109]. Second, we intend to collect more varied
moment-by-moment ratings (e.g., of discrete emotion rat-
ings, or appraisal ratings), as the current rating scale simply
measures emotional valence—the most-important principal
component of emotions, but it is by no means exhaustive.
We hope that this first version of the SEND is but the first
of a cumulative set of resources for affective computing and
psychology researchers, and that the SENDv1 and future
extensions will enable more sophisticated, human-like AI.

5.2 Modeling

In its current form, the SENDv1 has proven to be a useful
data set for training emotion recognition models; however,
there is still room for future work on the modeling, in order
to best extract and integrate the rich information from multi-
ple modalities. For example, all our best-performing models

used only one or two modalities, and future research could
examine how to better integrate multimodal information to
improve performance: We found in a recent investigation
[49] that state-of-the-art models with simple concatenation
fusion do poorly on multimodal inputs on the SENDv1,
and required more sophisticated fusion methods to better
integrate multiple modalities.

In particular, we find that, on our dataset, models trained
on the linguistic features perform the best. This should not
be surprising, because a priori, we intuitively expected that
the most important predictor of the emotions in a narrative
would be the linguistic content of the narrative. However,
we did not use very sophisticated linguistic features—we
used a Bag of Words with GloVe features for each time win-
dow, which results in an averaged word vector. Importantly,
these features may capture some semantic meaning in each
window, but likely do not capture any narrative elements,
such as the arc, climax, and resolution of a story. Repre-
senting and understanding narratives remains a challenging
state-of-the-art problem in Natural Language Processing.
From an affective computing perspective, linguistic features
should ideally capture how people subjectively interpret
events, which is an important precursor to emotions.

To reiterate this point in a broader context, the manner
in which the majority of affective computing conceptualizes
emotion understanding is primarily via emotion recognition
from observable cues. That is, an affective computer “un-
derstands” what a user is feeling if the affective computer
perceives and processes behavioural cues like the user’s
facial expressions, and produces an output of what the user
is feeling. This is a difficult task, due to the large complexity
of how emotions are expressed in face, voice, and other
modalities, and as we mentioned, the field has made much
progress on this front [9], [10]. This assumption is also
encapsulated in the discriminative time-series approaches
we reviewed, which is to find the best (statistical) mapping
from the behavioral cue data to an emotion label or rating.

However, from a psychological perspective, emotion
recognition is just one of the many ways that people can
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understand someone’s emotions [3], [4]. People understand
how others’ emotions arise as responses to events in the
world—including via subjectively evaluating the signifi-
cance of the event, as in Appraisal Theories of emotion [1],
[2], [4]—or how emotions dynamically vary in interpersonal
interactions [110]. More broadly, a theoretically-driven ap-
proach would suggest building a causal model of how emo-
tions arise, how they vary over time, and how they result
in behavior [54], and use these causal models as a basis
for emotion understanding. This is the assumption behind
the generative approach (and event-based approaches [77],
[78], which we did not cover here), which posits a causal
data-generating process. These perspectives offer exciting
potential for capturing and modeling affective dynamics.

There is still much work to be done: We note that the
generative models we presented still do not capture events
and appraisals, and still rely on behavioral cues. Further-
more, as mentioned, our use of word-vector representations
for linguistic cues does not identify real-world events (e.g.
“I had a breakup”) or the subjective appraisals that sub-
sequently accompany these events. We think a fruitful set
of future directions include integrating existing models of
what constitutes an emotionally-relevant event (e.g., from
computational appraisal theories and first-person emotion
architectures [2], [111]) into machine-learning models, per-
haps via a generative or event-based approach.

More generally, a causal model-based approach is also
applicable beyond multimodal time-series emotion recogni-
tion to longitudinal emotion understanding—that is, under-
standing emotions over the course of many sessions. For
example, a medical robot that sees a patient once every
few months would need to maintain a longitudinal record
of what were the events that happened to the patient—
diagnosis and continual treatment records, progression of
the medical condition—in order to decide how best to affec-
tively respond to the patient. Empathic doctors naturally do
this, especially if the medical condition is sensitive (e.g., ter-
minal or incurable), and even if there are long gaps between
patient visits. Such longitudinal emotion understanding can
be thought of as a generalized version of the time-series
problems we discussed in this paper: The observations
(patient-robot interactions) may be irregularly spaced, and
may be driven by other “events” such as test results and
other medical information. We hope that some of the ideas
from the time-series models we discussed will also prove
useful in longitudinal modeling.

In conclusion, time-series emotion recognition is a cru-
cial component of affective computing. In this paper, we
have outlined several challenges of—as well as several
state-of-the-art solutions to—capturing dynamics in emo-
tion recognition. We hope that this discussion will inspire
more ambitious, theoretically-driven modeling using di-
verse combinations of approaches.
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