
‐ Incomplete multimodal time series data is highly common

     ‐ mobile robots with asynchronous sensors

     ‐ partially annotated videos for semantic segmentation

‐ Classical models (e.g. HMMs) are insufficiently powerful

‐ Neural models (e.g. RNNs) do not handle missingness

‐ Hybrid deep probabilistic models still rely on RNNs for inference

‐ A novel inference method that handles multimodality and missingness

‐ Combines strengths of neural networks with message passing

‐ Capable of filtering, smoothing, and sequencing

‐ Performs interpolation, extrapolation, and conditional generation

‐ Allows for weakly supervised learning of time series data

‐ Nonlinear Gaussian state space model

‐ Conditionally independent modalities x1, ..., xM

‐ Transitions and emissions modeled by deep neural networks
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‐ Modality 1

‐ Modality 2

‐ Latent state
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Filtering Smoothing Sequencing
Infer current zt given past observations Infer some zt given all observations Infer z1 to zT given all observations

presentpast presentpast future presentpast future

‐ Posteriors can be factorized into:

     ‐ dependence upon past + present + future

     ‐ dependence upon each modality

‐ Multimodal temporal fusion via:

     ‐ approximating each term as Gaussian

     ‐ multiplying via Product of Gaussians

‐ Advantages of Product of Gaussians:

     ‐ tractable (weighted sum of input parameters) 

     ‐ handles missing modalities

     ‐ gives more weight to more certain modalities

‐ Compute past and future dependence via:

     ‐ backward message passing from the future

     ‐ forward message passing from the past

Step 1:  Backward pass to compute Step 2:  Forward pass to compute Step 3:  Combine forward and backward 

messages for smoothing or sequencing

Step 4:  Maximize ELBO by learning 

neural network parameters for the 

model and inference distributions
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Dataset II: Weizmann actions (video + silhouettes + labels)Dataset I: Noisy Spirals (x & y co‐ordinates) 
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Inference tasks

Baselines

‐ Forward RNN to infer zt given x1:t

‐ Backward RNN to infer zt given xt:T

‐ Zero‐masking / update‐skipping variants
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