Managing Multimodal Missingness Factorized Inference in Deep Markov Models for Incomplete Multimodal Time Series

Tan Zhi-Xuan^{1,2}, Harold Soh³, Desmond C. Ong^{2,3} ¹MIT EECS ²A*STAR AI Initiative ³NUS School of Computing

Motivation

- Incomplete multimodal time series data is highly common
 - mobile robots with asynchronous sensors
 - partially annotated videos for semantic segmentation
- Classical models (e.g. HMMs) are insufficiently powerful
- Neural models (e.g. RNNs) do not handle missingness
- Hybrid deep probabilistic models still rely on RNNs for inference

Multimodal Deep Markov Model (MDMM)

Contributions

- A novel inference method that handles *multimodality* and *missingness*
- Combines strengths of *neural networks* with *message passing*
- Capable of *filtering*, *smoothing*, and *sequencing*
- Performs interpolation, extrapolation, and conditional generation
- Allows for *weakly supervised learning* of time series data

- Nonlinear Gaussian state space model
- Conditionally independent modalities $x^1, ..., x^M$
- Transitions and emissions modeled by deep neural networks —

Factorized Inference in MDMMs

Filtering Infer current z_t given *past* observations $p(z_t|x_{1:t}) \propto p(z_t|x_{1:t-1})$

Smoothing Infer some z_t given *all* observations $p(z_t | x_{t+1:T})$ $p(z_t|x_{1:T}) \propto p(z_t|x_{1:t-1})$ $p(z_t)$ future

Sequencing Infer z_1 to z_T given all observations $p(z_t | x_{t+1:T})$ $p(z_{1:T}|x_{1:T}) \propto \prod p$

- Posteriors can be factorized into:

- dependence upon past + present + future
- dependence upon each modality
- Multimodal temporal fusion via:
 - approximating each term as Gaussian
 - multiplying via Product of Gaussians
- Advantages of Product of Gaussians:
 - tractable (weighted sum of input parameters)
 - handles missing modalities
 - gives more weight to more certain modalities
- Compute past and future dependence via: - backward message passing from the future

past past

future

- forward message passing from the past

Backward-Forward Variational Inference (BFVI)

MSE: 0.018

Step 3: Combine forward and backward messages for smoothing or sequencing $q(z_t|x_{1:T}) \propto q(z_t|x_{1:t})q(z_t|x_{t+1:T})/p(z_t)$

Step 4: Maximize ELBO by learning neural network parameters for the model and inference distributions

 $p(x_t^m|z_t)$ Model: $p(z_t | z_{t-1})$ $q(z_t|x_t^m)$ $p(z_t|z_{t+1})$ Inference:

Experiments

MSE: 0.029

Dataset II: Weizmann actions (video + silhouettes + labels)

Baselines

- Forward RNN to infer z_t given x_{1:t}
- Backward RNN to infer z_t given $x_{t,T}$
- Zero-masking / update-skipping variants

MSE: 0.178

MSE: 0.023

MSE: 2.157

v observed

Inferred

skip (0.9) run (1.0) run (1.0) run (1.0) run (0.9) run (1.0) run (0.6) walk (1.0

