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Abstract—Modern emotion recognition systems are trained
to recognize only a small set of emotions, and hence fail to
capture the broad spectrum of emotions people experience and
express in daily life. In order to engage in more empathetic
interactions, future AI has to perform fine-grained emotion
recognition, distinguishing between many more varied emotions.
Here, we focus on improving fine-grained emotion recognition by
introducing external knowledge into a pre-trained self-attention
model. We propose Knowledge-Embedded Attention (KEA) to
use knowledge from emotion lexicons to augment the contextual
representations from pre-trained ELECTRA and BERT models.
Our results and error analyses outperform previous models
on several datasets, and is better able to differentiate closely-
confusable emotions, such as afraid and terrified.

Index Terms—Affective Computing; Facial Emotion Recogni-
tion; Transfer Learning;

I. INTRODUCTION

Imagine telling your chatbot that your dog just died. Instead
of correctly understanding that you are experiencing grief (and
offering condolences), it classifies you as feeling sad and offers
to play you a happy song to cheer you up. People experience
a wide range of emotions, and it is important for AI agents
to correctly recognize subtle differences between emotions
like sadness and grief, in order to improve their interactions
with people and to avoid making a faux pas like the chatbot
above [1]. Traditionally, the vast majority of work in emotion
recognition from text focuses on recognizing just six “basic”
emotions [2], [3], usually happiness, surprise, sadness, anger,
disgust, and fear. This set clearly fails to capture the broad
spectrum of emotions that people experience and express in
daily life, such as pride, guilt, and hope [4]–[6].

Recently, there have been efforts to focus on larger classes
of emotions from text-based data with the introduction of
the EmpatheticDialogues dataset [7], which consists of online
conversations in 32 different emotion categories, and the
GoEmotions dataset [8], which consists of Reddit comments
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labelled with 28 different classes. These recently-proposed
datasets are an important step in training fine-grained emo-
tion classification models that can recognize more nuanced
emotions.

Concurrently, pre-trained language models such as ELEC-
TRA [9] and BERT [10] have achieved state-of-the-art per-
formance in NLP, such as on various text-classification tasks.
Moreover, incorporating knowledge into text representations
have been shown to improve model performance in various
domains [11], [12]. Indeed, much of the differences between
fine-grained emotion classes require deeper semantic knowl-
edge, which may already exist in resources like emotion
lexicons. Borrowing from these insights, we hypothesized that
incorporating such external knowledge into existing contex-
tualized representations will improve model performance for
fine-grained emotion recognition.

In this work, we introduce Knowledge-Embedded Attention
(KEA), a knowledge-augmented attention mechanism that
enriches the contextual representation provided by pre-trained
language models using emotional information obtained from
external knowledge sources. This is achieved by incorporating
the encoded emotional knowledge with the contextual repre-
sentations to form a modified key matrix. This key matrix
is then used to attend to the contextual representations to
construct a more emotionally-aware representation of the input
text that can be used to recognise emotions. We introduce two
variants of KEA, (i) a word-level KEA and (ii) a sentence-
level KEA, which incorporate knowledge at different text
granularities.

We compare our approach with representative baselines and
find that KEA-based models show improved performance for
fine-grained emotion recognition. Furthermore, we perform
additional analysis to show the extension of our model to
generalise to other contextual encoders and also shows its
efficacy using other emotion knowledge sources. Finally, we
perform an in-depth case study using the EmpatheticDialogues
dataset to look into the two categories of emotion classes that
contribute to a majority of misclassifications, to investigate the
impact of using KEA on both these categories.
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II. RELATED WORK

A. Emotion recognition from text

In recent years, emotion recognition systems are primarily
modelled using neural architectures such as LSTMs, RNNs
and CNNs [3], [13]–[15] as they tend to outperform classical
machine learning approaches that use feature-engineering [3].
The most recent pre-trained language models use Transformer-
based architectures such as ELECTRA [9] and BERT [10],
and have achieved state-of-the-art performance in a variety of
downstream tasks in NLP. These pre-trained language models
have also been employed for emotion recognition [7], [8], [16].
However, the vast majority of the aforementioned approaches
often only consider a small set of 6-8 emotion classes [2],
such as happiness, surprise, sadness, anger, disgust, and fear.

B. Fine-grained emotion recognition

Many AI papers implicitly rely on psychological theories
that emotions exist as discrete categories, and thus formu-
late emotion recognition as a classification problem. Many
researchers borrow Ekman’s [17] list of six “basic” emotions,
or similar lists like Plutchik’s [18] eight “primary” emotions.
However, these lists are far from comprehensive. People in
their daily lives obviously experience a much larger set of
emotions, including shame, guilt, and pride, which the major-
ity of emotion recognition models today, being trained on a
limited set of emotions, will fail to capture.

We use the term “fine-grained” emotion classification to
indicate tasks with a larger number of emotion classes (min-
imally, greater than 8). Fine-grained emotion recognition
systems are gaining traction due to their importance in the
development of empathetic agents that can differentiate subtle
and complex emotions. The major limiting factor has been
the lack of datasets with fine-grained emotion labels. This
has changed with the introduction of recent corpora such as
EmpatheticDialogues [7], which consists of textual conversa-
tions labelled with 32 emotions, and GoEmotions [8], which
consists of Reddit comments labelled with 28 emotions. In
this work, we enhance contextual embeddings from pre-trained
models such as ELECTRA using lexicon knowledge to build
an emotion recognition model that scales well to fine-grained
emotions.

C. Knowledge-enhanced text representations

External knowledge sources are known to provide explicit
knowledge for the task at hand, which can complement the
representations implicitly learnt by deep learning models [11].
Knowledge has been incorporated with representations learnt
by neural architectures such as BiLSTMs, CNNs and RNNs,
using different techniques such as concatenation [19] and
attention-based mechanisms [12], [20], [21]. However, given
the improvements offered by pre-trained language models like
BERT, we focus the rest of this discussion on works which
incorporate knowledge into these pre-trained models to further
enhance their performance.

Integrating knowledge into contextual representation from
pre-trained language models can be classified into two ap-
proaches. The first type of approach re-trains these language
models from scratch by modifying the raw input [22], [23],
via multi-task learning [24], [25] or by augmenting the word-
embedding [26]–[29]. Although, these methods can help im-
prove performance in downstream tasks, they have to be
retrained each time and/or redesigned if other knowledge
sources need to be accommodated.

The second set of approaches enrich the contextual rep-
resentation broadly either via early fusion or late fusion.
Early fusion techniques incorporate knowledge source at the
input/embedding stage. Generally the knowledge sources used
in early fusion are linguistic in nature such as auxiliary sen-
tences [30]. Late fusion, on the other hand, involves combining
the knowledge embedding of the input and the contextual
representation at the later stage. Numerous approaches exist
to do this. A common way of performing late fusion is by
concatenating the external knowledge embedding and contex-
tual representations [31], [32]. Alternatively, Bruyne et al.,
[19] combined BERT representation with lexicon data using
word-level concatenation and passed it via a BiLSTM to per-
form classification. Additionally, Wang et al., [33] combined
knowledge sources by pre-training knowledge data separately
using models called adapters and combined them with BERT
representations at a later stage. These set of approaches
provide flexibility to add additional knowledge sources without
the need to modify or re-train the language model depending
on the kind of knowledge added.

We also consider emotional knowledge provided by lexicon
data, which largely consists of association scores for emotional
dimensions such as emotion intensity, valence and arousal.
These ratings are generally just real-valued vectors [34], [35].
Hence, we focus on incorporating emotional knowledge to
the contextual embeddings produced by pre-trained language
models via late fusion and fine-tuning them to aid in the task
of emotion recognition.

III. PROPOSED APPROACH

A. Model Description

The proposed model, in Fig. 1, embeds an input text X
into two latent spaces: a (i) contextual representation, and an
(ii) emotional encoding. The emotional encoding is obtained
from external knowledge sources such as emotional lexicons.
We hypothesize that enriching contextual-representation us-
ing emotional encodings via Knowledge-Embedded Attention
(KEA) will provide a richer representation of the input text,
improving the final emotion classification. We introduce both
a sentence-level and a word-level variant of KEA.

Contextual representations provided by pre-trained lan-
guage models have been shown to improve language under-
standing by paying attention to all words and their surrounding
context to encode a meaningful representation of the content
[9], [10]. In our work we use both BERT and the recently-
introduced ELECTRA, a discriminatively pre-trained Trans-



Fig. 1. An overview of the proposed KEA approach. (a) The overall flow of KEA-based models. Here, Xe is the transformed input text using the Knowledge
base and Hc is the last layer output of the pre-trained language model (e.g., ELECTRA). (b) Sentence-level KEA, where He denotes the emotional encoding
that is concatenated with Hc to form the Key matrix of attention. (c) Word-level variant of KEA where Hc and Xe are concatenated at the word-level and
passed into a BiLSTM to obtain Hec which serves as the Key matrix for attention.

former model which achieves state-of-the-art performance in
various downstream tasks.

We denote the representation corresponding to the hidden
states from the last layer of the pre-trained models as matrix
Hc = {h0, · · · , hN} where Hc ∈ RN×lc and lc is the size
of the output representation generated by BERT or ELEC-
TRA (we use the -base versions of BERT and ELECTRA;
lc=768). The representation corresponding to the [CLS] token,
h0, is taken as the contextual representation for the entire
input text for classification. Intuitively, this offers a meaningful
summary of the entire input which is further enriched with
external emotional knowledge via KEA.

Knowledge-Embedded Attention (KEA) incorporates
emotional knowledge obtained from lexicons with contextual
representations provided by pre-trained language models. To
achieve this, we use knowledge obtained from emotion lexi-
cons, which provides ratings associated to different emotion-
related dimensions. Below we elaborate on the two proposed
variants of KEA.
Sentence-level: In sentence-level KEA (Fig. 1a), we obtain the
emotional encoding by transforming the input X to a feature
vector Xe, whose dimension depends on the lexicon data used,
which we denote as le. The input sequence is also padded to
a dimension of fixed value, which we set to 512 as it is the
default sequence length dimension of -base. We then project
the above transformed input vectors using dense layers to form
the sentence-level emotional encoding He where He ∈ Rle×lc .

Following self-attention terminology [36], we concatenate
the emotional encoding He and contextual representation Hc

to form the Key K where K ∈ R(N+le)×lc and we use h0 as
the Query to obtain the softmax-attention score s. Intuitively,
Hc provides a meaningful representation of the entire input
based on its pre-trained knowledge, and He provides an emo-
tional summary of the input based on the lexicon information.
The final representation hl is obtained by weighting the key
matrix with s. Including Hc together with He into the key
K, helps preserve the contextual information learnt by the
encoder in addition to the added emotional knowledge while
re-weighting h0. The overall attention layer is given by:

K = concat(Hc, He) s = softmax(hᵀ0 ·K)

hl = sᵀ ·K (1)

Word-level: In word-level KEA (Fig. 1b) we modify K by
incorporating knowledge at the word-level. We transform each
word xi in the input X to a feature vector xei . Each contextual
representation hi (i.e., from ELECTRA) is concatenated with
the corresponding knowledge information xei , and is then
projected into a latent state using a BiLSTM. We denote the
hidden output state generated by the BiLSTM as heci :

hec
i = BiLSTM([hi;x

e
i ], h

ec
i−1, h

ec
i+1), ∀i ∈ [1, ..., N ] (2)

We use Hec = (hec0 , · · ·hecN ) where Hec ∈ RN×2l, where l
is hidden state dimension of the LSTM which we set to 384.
In word-level KEA, Hec serves as the Key matrix K. The
remaining steps follows sentence-level KEA:

K = concat(Hec) s = softmax(hᵀ0 ·K)

hl = sᵀ ·K (3)



Classification: Finally, hl is fed into a two-layer dense net-
work to get the output probabilities of the emotions for the
corresponding input. We train the model using the standard
Cross Entropy loss for single-label settings and Sigmoid cross
entropy loss for multi-label settings [8].

IV. EVALUATION

A. Datasets

We tested our models on three datasets which span a range
of fine-grained emotion classes (11, 28, 32 classes) and text
domains (tweets, forum posts, and conversations).

• EmpatheticDialogues (ED) [7]1 This dataset consists of
24,850 two-way conversations in English with an average
of 4.31 utterances. Each conversation is annotated with
one of 32 emotion labels and the label distribution of
the dataset is balanced. Note that the labels are for
the entire conversation and not for each utterance. The
train/validation/test split for the dataset is 19,533 / 2,770 /
2,547 samples respectively. For our input, we concatenate
the utterances separating them with the [SEP] token.

• GoEmotions [8]2 The (filtered) version of this dataset
comprises 54k English Reddit comments annotated with
one or more of 28 classes. The train/validation/test split
is 43,410 / 5,426 / 5,427 samples respectively.

• Affect in Tweets (AIT) [37] This dataset was part of
SemEval-2018 Task 1: Affect in Tweets3 and consists of
Twitter data. We utilise the dataset provided for the E-c
task where each tweet is classified as one, or more, of 11
emotional states of the tweeter. The dataset comprises a
total of 10,983 tweets with the train/validation/test split
as 6,838 / 886 / 3,259 samples respectively.

B. Evaluation Metrics

For single-label settings (EmpatheticDialogues dataset) we
use top-1 accuracy, top-3 accuracy (henceforth referred to as
top-1 and top-3 respectively) and macro-F1 score. For multi-
label settings, we use macro F1-score, Precision and Recall.
In addition, for Affect in Tweets we also report the Jaccard
index, which was the primary evaluation metric in SemEval-
2018 E-c task.

C. Lexicon features

All results in Table I were obtained using NRC-VAD [35]
(henceforth referred to as VAD) lexicon data. This knowledge
source contains ratings of valence, arousal, and dominance of
20k words. The rating values range from 0 to 1 and vary from
negative to positive (valence), calm to aroused (arousal), and
submissive to dominant (dominance). To transform an input
text X into its corresponding valence, arousal, and dominance
vectors, we replace each word in the utterances with the
corresponding values from the lexicon. Following previous
works [26], words which do not appear in the lexicon are

1https://github.com/facebookresearch/EmpatheticDialogues
2https://github.com/google-research/google-research/tree/master/

goemotions
3https://competitions.codalab.org/competitions/17751

given the mid-value score of 0.5. The choice of knowledge
can be varied based on the task at hand; we show the efficacy
of KEA-based methods by incorporating another knowledge
source in Section V-B.

D. Baselines

We compare the performance of our model with three main
categories of baselines.

• Models without pre-training: We compare with recur-
rent models such as (i) BiLSTM with self-attention [38],
(ii) CNN+c-LSTM [39] and (iii) RCNN [40].

• Pre-trained language models: ELECTRA
[9] and BERT [10]. We obtain the pre-
trained models bert-base-uncased and
electra-base-discriminator from
HuggingFace’s Transformers library 4.

• Knowledge-enhanced models: We compare with com-
monly used methods of incorporating knowledge with
contextual representations:
(i) k-ELECTRAconcat, which is a simple concatenation
emotional encoding obtained from He to Hc, which is
then projected using dense layers to perform classifica-
tion. This is the most straightforward way to incorpo-
rate knowledge [31], [32]. This serves as baseline for
sentence-level knowledge incorporation. By contrast, our
KEA includes an attention layer.
(ii) k-ELECTRABiLSTM which is similar to word-level
KEA, concatenates knowledge in a word-level fashion
to the contextual representation. This representation is
further passed via single-layer BiLSTM similar to [19],
with the hidden state dimension of the BiLSTM set to
384. This serves as a baseline to compare word-level
knowledge incorporation.
(iii) KET (Knowledge Enriched Transformers) [26], a
knowledge-based dynamic graph attention model that
enhances Transformers using VAD and ConceptNet [41]
to detect emotion from conversation data.

• In addition to the above models, we compared with
state-of-the-art (SOTA) performance for all the datasets.
For ED we choose Attention Gated Hierarchical Mem-
ory Network (AGHMN) [42] that uses HMN and GRU
based hierarchical architecture to capture utterance-level
emotions from conversation, for Affect in Tweets we
compared with performance of the best team in the
SemEval-2018 E-c challenge [43] and for GoEmotions
we compared with performance provided by authors of
the dataset [8].

As AGHMN and KET is designed primarily for conversation
and require labels for each utterance, we report the perfor-
mance only on ED dataset and we label every utterance in a
conversation in the ED dataset with the conversation label to
make these models compatible with it.

4https://huggingface.co/transformers/



EmpatheticDialogues Affect in Tweets GoEmotions
top-1 / % top-3 / % F1 jaccard precision recall F1 precision recall F1

BiLSTM [38] 35.8 (0.6) 62.0 (0.8) 35.9 (0.6) 43.7 (1.0) 41.8 (1.9) 54.7 (2.2) 46.7 (0.4) 56.5 (2.6) 39.3 (2.3) 43.9 (1.0)
c-LSTM [39] 37.9 (0.1) 64.7 (0.3) 37.5 (0.2) 51.8 (0.5) 45.3 (0.8) 62.4 (0.6) 51.0 (0.8) 50.9 (1.7) 27.2 (0.8) 31.6 (1.0)
RCNN [40] 43.0 (0.6) 69.5 (0.4) 43.2 (0.6) 54.2 (0.5) 46.7 (1.4) 64.1 (1.9) 53.5 (0.5) 58.4 (1.0) 37.5 (1.0) 42.5 (0.6)
SOTA - - 41.21 (-) 57.82 (-) - - - 40.03 (-) 63.03 (-) 46.03(−)
BERT 51.9 (0.6) 78.2 (0.5) 50.7 (1.0) 56.3 (0.8) 54.2 (2.6) 64.1 (3.8) 57.7 (0.4) 51.7 (1.9) 49.5 (2.3) 48.3 (1.5)
ELECTRA 52.8 (0.5) 78.7 (0.4) 50.9 (0.7) 57.6 (0.2) 57.2 (1.7) 61.2 (1.9) 57.6 (1.2) 47.4 (1.3) 50.4 (1.7) 47.5 (0.7)
KET [26] 36.2 (-) - 34.9 (-) - - - - - - -
k-ELECTRAbilstm 48.1 (0.9) 75.0 (1.5) 45.6 (1.0) 54.9 (1.3) 39.7 (2.6) 68.2 (2.5) 49.5 (2.2) 43.8 (2.7) 44.8 (1.7) 42.3 (0.9)
k-ELECTRAconcat 52.1 (0.4) 78.0 (0.5) 50.3 (0.7) 55.7 (1.8) 47.3 (3.2) 66.3 (1.7) 54.3 (2.6) 45.7 (1.4) 48.2 (0.9) 45.6 (0.9)
KEA-ELECTRAword 53.6 (0.6) 78.5 (0.8) 52.5 (0.6) 57.7 (0.8) 50.8 (0.8) 66.9 (1.1) 57.1 (0.6) 46.1 (1.8) 50.2 (0.9) 46.8 (0.7)
KEA-ELECTRAsentence 54.1 (0.6) 80.5 (0.5) 53.1 (0.7) 58.3 (0.1) 57.7 (1.4) 61.9 (0.7) 59.1 (0.3) 48.6 (0.9) 52.9 (0.6) 49.6 (0.8)

TABLE I
SUMMARY OF THE RESULTS OBTAINED USING TEST DATA FOR EMPATHETICDIALOGUES (ED), AFFECT IN TWEETS (AIT) AND GOEMOTIONS DATASETS.

SOTA ROW IMPLIES THE STATE-OF-THE-ART PERFORMANCE ON THE THREE DATASETS, 1 IS OBTAINED BY USING AGHMN [42] MODEL WHICH
PREDICTS EMOTION FROM TEXTUAL CONVERSATIONS, 2 AND 3 ARE TAKEN FROM [43] AND [8] RESPECTIVELY. FOR ED, WE USE TOP-1 ACCURACY,
TOP-3 ACCURACY AND MACRO-F1. KET AND AGHMN ARE DESIGNED FOR CONVERSATION, HENCE WE CONSIDER THEIR PERFORMANCE ONLY FOR

ED. FOR THE AIT AND GOEMOTIONS DATASETS, WE COMPARE THE PERFORMANCES USING PRECISION, RECALL AND MACRO-F1. FOR AIT WE ALSO
REPORT THE JACCARD INDEX. THE METRICS ARE AVERAGED OVER 5 RUNS, WITH STANDARD DEVIATIONS REPORTED IN PARENTHESES AND BEST

SCORES IN BOLD.

E. Implementation details

Input text was converted into tokens using WordPiece
tokenization followed by ELECTRA preprocessing. For fine-
tuning, we use Adam optimizer [44] and each input text in the
batch is padded to the length of the text with the maximum
length. We repeated this process with five random seeds and
report the mean and the standard deviation of performance
over 5 runs. For running our models, we used a Google
Colaboratory instance equipped with NVIDIA Tesla T4 GPU.

For fine-tuning KEA-based models, we chose learning rates
from the set {1e−05, 2e−05, 3e−05} and batch size from the
set {10,16}. We used the Adam [44] optimiser with β1 set
to 0.9, β2 set to 0.999, and ε set to 1e-08. Early stopping
was done based on top-1 accuracy in the validation set for
EmpatheticDialogues dataset and F1 score in Affect in Tweets
and GoEmotions dataset. For Affect in Tweets dataset the input
tweets were prepossessed by removing elements such as non-
ascii characters, letter repetitions and extra white-spaces and
replacing all the user-mentions and links to unique identifiers.
We provide source code for all the implementations5.

For the BiLSTM, cLSTM and RCNN models, we used pre-
trained GloVe vectors of dimension 200 as word embedding.
These models were trained with a batch size of 64 using Adam
optimiser and learning rate was chosen from the set {1e−02,
1e−03, 5e−03} based on the option that yielded the best
top-1 accuracy in the validation set for EmpatheticDialogues
dataset, and F1 score in Affect in Tweets and GoEmotions
dataset. For the comparison with KET6 and AGHMN7 we
used the implementation provided by the authors. For fair
comparison we only compared with these methods for the
EmpatheticDialogues dataset by applying the conversation-
level label to every utterance in the conversation as these
methods perform utterance-level emotion recognition taking
into account the sequential nature of the conversation.

5https://github.com/varsha33/Fine-Grained-Emotion-Recognition
6https://github.com/zhongpeixiang/KET
7https://github.com/wxjiao/AGHMN

V. RESULTS AND DISCUSSION

We compared our proposed KEA, using ELECTRA as
a base language model, against representative baselines de-
scribed in Section IV-D. We found that KEA-infused mod-
els have improved performance on fine-grained emotion
classification for each of the three datasets, spanning di-
verse types of input text (i.e. tweets, Reddit comments and
emotionally-grounded conversation data). This indicates that
enhancing contextual representations using KEA helps en-
code complex emotions. Overall, Sentence-level KEA (KEA-
ELECTRAsentence) performs the best on most of the evaluation
metrics. We note that word-level KEA (KEA-ELECTRAword)
only offers marginal improvement over the baseline ap-
proaches as compared to sentence-level KEA. In addition, it
is interesting to note that word-level knowledge incorporation
done by both k-ELECTRABiLSTM and KEA-ELECTRAword
have decreased performance compared to their sentence-level
counterparts k-ELECTRAconcat and KEA-ELECTRA respec-
tively.

A. Generalizing to other contextual encoders

To understand whether the proposed method extends to
other pre-trained models, we evaluate our approach using
BERT [10] as the contextual encoder. Table II shows that
word-level KEA does not exhibit improved performance over
BERT. On the other hand, KEA-BERTsentence outperforms
BERT on all the datasets on almost all of the metrics,
indicating that the sentence-level KEA seems to be a more
generalizable way of incorporating knowledge into contextual
encoders. One possible reason for the low generalizability of
word-level knowledge incorporation is that the tasks at hand
have sentence-level text inputs. As a result, sentence-level
KEA which extracts global information by taking the entire
input into consideration encodes the emotional information in
the input in a better fashion. However, it will be interesting in
the future to understand how word-level knowledge could still
be incorporated to bolster local information dependent tasks
such as word-level sentiment analysis.



EmpatheticDialogues Affect in Tweets GoEmotions
top-1 / % top-3 / % F1 jaccard precision recall F1 precision recall F1

BERT 51.9 (0.6) 78.2 (0.5) 50.7 (1.0) 56.3 (0.8) 54.2 (2.6) 64.1 (3.8) 57.7 (0.4) 51.7 (1.9) 49.5 (2.3) 48.3 (1.5)
KEA-BERTword 51.8 (0.3) 77.5 (0.4) 51.0 (0.3) 56.9 (0.3) 51.9 (1.3) 66.1 (1.2) 57.7 (0.5) 46.2 (0.8) 51.1 (0.8) 47.2 (0.7)
KEA-BERTsentence 53.3 (0.4) 79.3 (0.7) 52.4 (0.5) 57.0(0.6) 56.8 (1.5) 61.3 (1.4) 58.2 (0.2) 51.4 (2.2) 52.5 (0.6) 51.0 (0.7)

TABLE II
GENERALIZATION TO OTHER CONTEXTUAL ENCODERS: SUMMARY OF THE RESULTS OBTAINED USING TEST DATA, FOR ANOTHER CONTEXTUAL

ENCODER, BERT. THE METRICS ARE AVERAGED OVER 5 RUNS, WITH STANDARD DEVIATIONS REPORTED IN PARENTHESES AND BEST SCORES IN BOLD.

EmpatheticDialogues Affect in Tweets GoEmotions
Lexicon top-1 / % top-3 / % F1 jaccard precision recall F1 precision recall F1

ELECTRA - 52.8 (0.5) 78.7 (0.4) 50.9 (0.7) 57.6 (0.2) 57.2 (1.7) 61.2 (1.9) 57.6 (1.2) 47.4 (1.3) 50.4 (1.7) 47.5 (0.7)
k-ELECTRAconcat EIL 51.7 (0.6) 77.7 (0.9) 50.1 (0.8) 55.7 (1.3) 46.1 (3.4) 60.9 (4.4) 51.4 (2.3) 46.4 (0.8) 47.5 (1.0) 45.0 (0.7)
KEA-ELECTRAword EIL 53.7 (0.6) 79.2 (0.8) 52.7 (0.7) 57.7 (0.8) 53.3 (3.6) 65.1 (2.5) 57.1 (1.7) 44.9 (2.0) 50.8 (1.2) 46.5 (0.6)
KEA-ELECTRAsentence EIL 54.0 (0.5) 80.1 (0.8) 53.0 (0.7) 58.1 (0.4) 52.8 (2.1) 66.5 (2.6) 58.1 (0.2) 47.5 (0.8) 53.0 (0.5) 49.2 (0.8)

TABLE III
GENERALIZATION TO OTHER LEXICONS: SUMMARY OF THE RESULTS OBTAINED USING TEST DATA, WHILE USING NRC-EMOTION INTENSITY LEXICON

(EIL). THE METRICS ARE AVERAGED OVER 5 RUNS, WITH STANDARD DEVIATIONS REPORTED IN PARENTHESES AND BEST SCORES IN BOLD.

B. Extension to other knowledge sources

To further investigate the versatility of KEA in integrat-
ing external knowledge into pre-trained language models,
we made use of another lexicon, NRC Emotion Intensity
Lexicon (NRC-EIL) [34] (henceforth referred to as EIL). This
lexicon data provides intensity annotations which contains
real-valued scores of intensity based on eight basic emotions
(anger, anticipation, disgust, fear, joy, sadness, surprise, and
trust) for 10k English words. In this analysis, we compare
ELECTRA which does not have emotional knowledge against
the three knowledge-incorporating models, k-ELECTRAconcat
which concatenates the knowledge embedding at the end,
KEA-ELECTRAword which adds knowledge in the word-level
and KEA-ELECTRAsentence which adds knowledge in the
sentence-level.

We can see from Table III that KEA-ELECTRAword
only marginally improves the performance over ELEC-
TRA whereas KEA-ELECTRAsentence outperforms ELECTRA
and KEA-ELECTRAword, incorporating emotional knowledge
more effectively to help recognise the complex set of emotions.
Interestingly, while the direct concatenation of contextual rep-
resentation and emotional knowledge (i.e. k-ELECTRAconcat)
showed improved performance when compared to ELECTRA
in the case of VAD from Table I, incorporating EIL instead
decreased the performance by a large margin. This highlights
that incorporating knowledge in the right manner is key
to preserve the rich information learnt by the pre-trained
models, and we can see that employing KEA shows consistent
performance across knowledge sources.

C. Case Study: Fine-grained Emotion Recognition

In this case study and error analysis, we use the Em-
patheticDialogues dataset to delve deeper into the model
behaviour. We classified the majority of misclassifications
into two categories, C1: Emotions with differing intensities
such as {annoyed, angry, furious}, {afraid, terrified} and
{joyful, excited} and, C2: Emotions with nuanced differences
such as {nostalgic, sentimental}, {embarrassed, ashamed} and
{impressed, proud}. These label sets are challenging because

the emotions within each set are similar, making it difficult for
the model to distinguish them. In addition, inter-speaker dif-
ferences in how they identify emotions [45] could increase the
difficulty. Table IV depicts two similar conversations, where
Speaker A labelled feeling terrified while Speaker B labelled
feeling afraid (despite actually using the word “terrified”).

Speaker Conversation snippet Label

A

“I am so scared to live in my
neighborhood ... There are people
that come around shooting their
guns.....”

Terrified

B

“I was terrified to walk home from
the bar one night ... There were
gunshots nearby so I just ran home
as fast as I could ...”

Afraid

TABLE IV
TWO EXAMPLES FROM THE EMPATHETICDIALOGUES DATASET DEPICTING
THE VARIATION OBSERVED AMONGST SPEAKERS FOR SIMILAR CONTEXTS.

afraid terrified
Predicted label

af
ra

id
te

rri
fie

dTr
ue

 la
be

l 0.11 0.64

0.11 0.71

ELECTRA

afraid terrified
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0.30 0.36

0.13 0.62
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nostalgic sentimental
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0.42 0.27

ELECTRA
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0.76 0.12

0.35 0.33

KEA-ELECTRA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 2. Excerpts from the confusion matrices to show comparisons between
ELECTRA and KEA-ELECTRAsentence for the two categories of misclas-
sifications. Top row: (afraid, terrified). ELECTRA tends to classify both
as terrified, while KEA-ELECTRAsentence shows a marked improvement in
classifying afraid, though at the cost of some correct classification of terrified.
Bottom row: (nostalgic, sentimental). The KEA improvement here is marginal.



Next, we turn to how KEA improved performance, by
comparing ELECTRA and KEA-ELECTRAsentence in Figure
2. We show snippets from the confusion matrix from both
models to compare misclassifications amongst problematic
label sets. In the example for C1 {afraid, terrified}, KEA-
based model fares better for both the emotion classes by
reducing misclassification amongst them. For category C2
{nostalgic, sentimental}, there is not much improvement; this
can be attributed to the interchangeable usage of these emotion
labels in conversational language. We have provided more
comparisons and entire confusion matrices in the Supplemen-
tary material.

D. Limitations and Future Work

Although incorporating external emotional knowledge via
KEA to pre-trained language models improves fine-grained
emotion recognition, there are a number of outstanding chal-
lenges. First, the fine-grained nature of the emotion classes
has not been explicitly encoded into our model architecture.
Developing such model architectures that inherently capture
the subtleties amongst the emotion classes could help create
better representations, which could lead to improved emotion
recognition performance. Second, the inter-individual variabil-
ity in that exists while expressing emotions is a limitation, as
seen in Table IV where they use different labels for similar
contexts. Modelling this variability is a highly challenging
task. A potential solution to this problem could involve
actively fine-tuning emotion recognition models to specific
users. Third, while we have shown the efficacy of our model
using two knowledge sources, these sources are similar in
nature—in our case they both are emotion lexicons, where
the “knowledge” is represented using real-valued numbers.
Future work could explore how KEA can be extended to
incorporate differing types of knowledge sources such as
knowledge graphs, categorical data, and relational knowledge
[11] and also delve deeper into the effect that the kind of
knowledge has in recognising different types of emotions.
Another promising direction is the use of external knowledge
to help in few-shot learning scenarios. The knowledge sources
have information regarding emotion labels that do not belong
to the current task which can potentially help an existing model
trained with external knowledge learn unseen labels using
fewer data samples. This work is a start towards equipping
deep-learning models to recognise larger number of emotions
and in the future we aim to address the above-mentioned
challenges.

E. Ethics Statement

Finally, we want to end on a note about ethical affective
computing. At a broader level, emotion recognition technology
has been coming under increasing scrutiny, due to two sets
of factors: (i) increasing awareness of the limitations of
technology to accurately “understand” human emotions (e.g.,
see [46], for limitations with facial expressions), and (ii) the
deployment of such technology in applications that directly
impact people [47]. Our work does not speak to (ii), but it does

directly address (i), in that the motivation of our paper includes
increasing the scope of text emotion classification models to go
beyond six emotions. As we highlighted in the introduction,
AI models today are trained on too few emotions, and this
severely limits the scientific validity of these models, as well as
limiting confidence in their deployment in real-life scenarios.
We hope that our work, sustained over time and together with
other researchers in the field, would strengthen the confidence
people have about the validity of such emotion recognition
technology. This will be part of an ongoing conversation to
improve our technology and alleviate some of the concerns
surrounding their development and deployment [48].

VI. CONCLUSION

In this work, we propose using KEA (Knowledge Embedded
Attention) to incorporate emotional knowledge from external
knowledge sources (like emotion lexicons) into contextual
representations provided by pre-trained language models like
ELECTRA. Across our various analyses with different con-
textual encoders (BERT) and other knowledge sources, we
find that our Sentence-Level KEA tends to perform very well
across the three datasets we considered (Tweets, Reddit posts,
and online conversations), and reduces misclassification of
several commonly confusable sets of emotions. This work
provides a strong example of how we can improve our AI
to be more emotionally-intelligent. If we want our AI to be
sensitive and know when to offer condolences versus when
to play an upbeat song, we need to be mindful to train our
AI to handle more complex and fine-grained emotions, and at
the same time modelling and being sensitive to psychological
nuances, like inter-individual variation in emotion experience
and expressions [5], [49], [50].
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