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Abstract

People have the fascinating ability to infer causality by observ-
ing other humans’ actions. We modelled this process using a
Bayesian rational agent model and showed how people can rea-
son about another agent’s beliefs and, by extension, infer the
world’s causal structure. We compared the model’s predictions
against humans’ causal judgements on a novel inference task.
Participants (N = 171) were shown a dynamic scene depict-
ing either a human agent, robot agent, or both agents acting
on two objects sequentially before observing an outcome. Af-
ter observing the human (vs the less intentional robot) agent,
people were more likely to infer that both objects (in sequen-
tial order) caused the outcome. When two agents of differ-
ent intentionality were shown, people favored the object that
the intentional agent interacted with as the cause of the out-
come. Our model captured these inference patterns well and
revealed insights into reasoning about semi-intentional agents
and multi-agent contexts.

Keywords: Causal learning; Social inference; Computational
cognitive modelling; Bayesian modelling

Introduction

People often learn by observing how other people interact
with the world. Take the example of learning to turn on a tele-
vision set. As a child, we learned how to operate a television
remote simply by watching our parents turn on the television.
Developmental psychologists argue that this process goes be-
yond the act of simple imitation (e.g., Lyons, Young, & Keil,
2007; Gardiner, Greif, & Bjorklund, 2011). People actively
build causal models of the world and observing the actions
of other human beings acts as an important support for this
process (Gopnik & Meltzoff, 1998; Waismeyer & Meltzoff,
2017; Meltzoff, Waismeyer, & Gopnik, 2012; Waismeyer,
Meltzoff, & Gopnik, 2015). But how does observing other
humans actually help learning? How is learning from human
interactions different from learning through physical object
interactions? In this study, we present a computational model
of learning which makes causal inferences from other agents’
goal-directed actions and show how this model explains hu-
man observers’ quick learning of hidden causal relationships.

People can discover hidden causal structures using various
methods. Early causal learning research established the im-
portance of spatiotemporal constraints in guiding the learn-
ing process (Michotte, 1962; Cohen & Oakes, 1993; Leslie
& Keeble, 1987; Oakes & Cohen, 1990). Even without re-
peated exposure, young children can draw causal inferences
between different events as long as they were spatially and

temporally close to one another. People can also do prob-
abilistic learning by inferring causality through the natural
associations between events (Cheng, 1997; Gopnik, Sobel,
Schulz, & Glymour, 2001; Kushnir & Gopnik, 2005). For in-
stance, we can learn about the powers of a television remote
by observing how often it is associated with the television
turning on. Finally, people also actively take part in the learn-
ing process by directly intervening on the world around them
(Gopnik & Schulz, 2007; Woodward, 2007, 2005). Rather
than passively observing the associations between events, we
can explore the buttons of the remote control and see which
buttons turn on the television set.

Observational causal learning is a distinct process which
allow people to learn by watching other agents interact with
the world. Observational causal learning has been shown to
be more effective at facilitating causal discovery than proba-
bilistic learning (Meltzoff et al., 2012; Bonawitz et al., 2010)
and also does not require the learner to go through (as much)
trial and error. Beyond affording learning efficiency, observa-
tional causal learning also directs people’s attention to learn
the most important causal relationships that helps them to
navigate their surrounding world (Meltzoff et al., 2012).

Psychologists explain that observational causal learning is
guided by intentionality. Similar to how people are more
likely to attribute causality to spatially or temporally close
events, Meltzoff et al. (2012) proposed that people might
also assign greater causal responsibility to intentional actions.
Supporting this account, intentional actions has been found to
guide the formation of causal beliefs more effectively than ei-
ther accidental actions (Gardiner et al., 2011; Luchkina, Som-
merville, & Sobel, 2018) or spontaneous events (Meltzoff et
al., 2012; Bonawitz et al., 2010), especially in contexts of
high uncertainty (Gardiner, 2014).

Goodman, Baker, and Tenenbaum (2009) proposed a ratio-
nal account of how intentionality is used to facilitate causal
inference. By assuming that the agent is goal-directed and
rational, the learner can infer the agent’s beliefs from their
actions which then allows the learner to infer about the exter-
nal world. For example, when we see our mother push the red
button on a remote control, we assume that she is performing
that action in order to achieve some outcome, which we soon
learn to be turning on the television set. The authors validated
their model by comparing its predictions to people’s causal
inferences of story vignettes describing an actor intentionally



intervening upon objects and observing outcomes.

In this paper, we sought to extend Goodman et al.’s (2009)
model to better understand how people use intentionality to
guide causal inference. In the real world, we often observe
entire sequences of causal events (Buchsbaum, Gopnik, Grif-
fiths, & Shafto, 2011) that makes it more challenging to infer
the beliefs of the actor and the underlying causal structures.
We created a scenario depicting an agent performing a realis-
tic sequence of actions and tasked the model to infer causality
from observing the agent’s actions. Additionally, we manip-
ulated intentionality by comparing a human agent against a
vacuum-bot (although, contrary to our predictions, many par-
ticipants still perceived the vacuum-bot to be intentional).

We extended Goodman et al.’s (2009) original model in
two ways. First, we integrated temporal information and
showed how it influences causal inference. When reasoning
about an intentional agent, an observer assumes that the agent
is actively planning out their actions to achieve their desire.
This assumption also takes the temporal order of the planning
into consideration. If we observe someone push two buttons
(e.g. “A” followed by “B”) to turn on the television, we infer
that they probably planned to push the two buttons in that se-
quence. When performing causal inference, we would hence
be more likely to infer that “A-then-B” caused the television
to turn on rather than “B-then-A”. Apart from temporal in-
formation from the agent’s planning, prior research has also
documented causal biases due to temporal contiguity to the
observed outcome (e.g., Michotte, 1962; Cohen & Oakes,
1993; Leslie & Keeble, 1987; Oakes & Cohen, 1990). In
our model, we integrated both of these processes that make
use of temporal information.

Second, we showed how the model can be applied to a
multi-agent setting which frequently occurs in the real world.
While prior studies have explored how causal inference can
be accomplished in a multi-agent context (Maes, Meganck,
& Manderick, 2007; Maes, Reumers, & Manderick, 2003),
these models were designed to integrate the beliefs and obser-
vations of different agents. They do not assume the intention-
ality of the agents and infer causality based upon the agents’
desires, beliefs, and actions. Taking intentionality into ac-
count can be especially important in a multi-agent setting
where both intentional and unintentional agents are observed.
Actions of intentional agents are more informative and are
often assigned higher causal weight (Meltzoff et al., 2012).
In our model, we propose a computational description of rea-
soning from multiple agents (intentional and unintentional)
within the same context and integrating these inferences to
form a coherent causal picture of the world.

We presented the model with a scene depicting an agent
(or agents) interacting with two objects in sequence before an
automated door opens. The task was to infer the likely cause
of the door opening. In the first two conditions (human vs
vacuum-bot), the agent acts upon a Blue (B) object followed
by a Pink (P) object, before the door opens. If the agents’
actions are perceived as intentional, we should expect people

to learn that both objects B and P (in sequence) caused the
door to open. This is because we infer that the agent acted on
both B and P in order to open the door. However, if the agent
is perceived as unintentional, it is less likely that they infer
the conjunction of both actions to be the cause. In a third
condition, we showed an intentional as well as an uninten-
tional action: the human agent acts on B while the vacuum-
bot acts on P. If people are sensitive to intentionality, then we
should expect people to assign more causal weight to the hu-
man’s action than the vacuum-bot’s action and infer B to be
a more likely cause than P. For each scenario, we compared
our model’s predictions with the causal judgements of human
participants.

a) Intentional Agent b) Unintentional Agent

)

c) Two-Agent

Figure 1: Graphical Models. Nodes represent variables,
shaded nodes are observable while clear nodes are latent, and
edges between nodes represent causal influence. a) Inten-
tional Agent Model, which assumes that outcomes (O) arise
from desire-directed (D) actions (A). One can infer the causal
structure (W) through agent’s beliefs (B). b) Unintentional
Agent Model, which assumes that actions are independent of
agent’s beliefs and desires. ¢) Two-Agent Model is a mixture
of both intentional and unintentional agent models where N
is the number of observed agents.

Computational Model

We propose a formal model which captures the process of
observational causal learning within the context of this study.
This model was adapted from Goodman et al. (2009), who
integrated a causal Bayesian network with a model of inten-
tional action (e.g., Baker, Jara-Ettinger, Saxe, & Tenenbaum,
2017). To infer the hidden causal structure of the world, the
model makes generative assumptions about how this struc-
ture is related to the observed agent’s actions as well as any



observed changes in the world (See Figure 1a).

In our presented scenario, the model takes the perspective
of the observer with the objective of inferring the world’s
hidden causal structure (W) from the observable actions, A,
taken by the agent as well as any observable outcome (O) on
the world (i.e. door opening). By assuming that the agent’s
actions are intentional, the learner assumes that the agent’s
actions are generated from the agent’s beliefs (B) and desires
(D). Through these beliefs, the learner can then infer about
the likely causal relationships in the world. The process of
belief inference can be modelled by the following:

P(B|A,D) «< P(A|B,D)P(B) (1)

where we fixed desire (D) to be “open door” since there
were no obvious alternative desires in our presented scenario.
Then, by assuming that the agent’s beliefs are reflective of the
underlying world structure (“knowledgeable agent” assump-
tion), the learner can jointly infer the agent’s beliefs as well
as the causal structures of the world. This is formalized by:

P(W,B|A,0,D) < P(A|B,D)P(O|W,A)P(BIW)P(W) (2)

Causal Structure and Belief, (W) and P(B|W)

We built the hypothesis space using the language of propo-
sitional logic (e.g., Goodman, Tenenbaum, Feldman, & Grif-
fiths, 2008). Each hypothesis is a proposition that asserts the
necessary actions required to open the door. For example,
the hypothesis “interact-with-blue” means that the blue box
is necessary to open the door. Each hypothesis can be bro-
ken down into atomic actions (e.g. “interact-with-blue”) and
logical connectors (i.e. and, or, then). To generate the pri-
ors for the causal structure, W, we used stochastic recursion
to randomly sample and combine the actions with the logical
connectives. This can generate conjunctive hypotheses such
as “interact-with-blue-and-pink”. This sampling method al-
lows sampling of arbitrarily complex causal structures, but fa-
vors simpler and shorter hypotheses over longer ones. For our
model specification, there is a 0.6 probability of sampling an
atomic hypothesis, a 0.4 % 0.6 probability of sampling a first-
order conjunctive hypothesis, and a 0.4 x (0.6) probability
of recursion. The beliefs of the agent, B directly inherits the
sampled prior of W such that P(B|W) = P(W).

Planning Actions, P(A|B,D)

The action space includes a list of actions defined within
the setting (“move-to-object-X”, “interact-with-object-X”,
“wait”, etc.). P(A|B,D) is estimated by sampling from
the action space in accordance to the agent’s beliefs (and
with desire fixed to “open door”). For instance, the be-
lief “interact-with-blue-and-pink”, can generate the action
sequence {“interact-with-blue” — “interact-with-pink} or
{“interact-with-pink” — “interact-with-blue”}. Additionally,
the sampling is constrained to ensure that the movements are
plausible. For instance, an “interact-with-blue” action would
be preceded by a “move-to-blue” action.

As people do not always act optimally, we added a num-
ber of random actions (from the action space) following an
exponential distribution € ~ Ae~* at random positions of the
action sequence. This reflects the idea that most of the actions
are rational (as the mode of the exponential distribution is 0)
but humans may, at times, perform unnecessary actions. For
our model, we set the free parameter A to be 1.

Simulating Outcome with Temporal Bias, P(O|A, W)

The outcome depends on whether the actions fulfill the re-
quirements of the causal structure. For example, if “interact-
with-blue” is the candidate cause, then the door would open
if “interact-with-blue” is part of the action sequence.

Additionally, to account for human bias toward events that
are temporally closer to each other, we added a decay func-
tion which decreases the probability of sampling the out-
come as a linear function of the number of “interleaving
actions” between the candidate cause and the observed out-
come. For example, if the observer samples the causal struc-
ture “interact-with-blue-then-pink” and observes the actions
{“interact-with-blue” — “interact-with-pink” — “wait” —
“move-to-door”} before the door is observed to open, we
have two interleaving actions that introduces temporal delay
(“wait” and “move-to-door”). This decreases the probability
of the door opening by 28 where & is the free decay parameter.
To choose 8, we performed a grid search using the data from
the human agent condition with 5 different values (0, .05, .1,
.15, .2) to minimize RMSE. & = .1 gave the best model fit and
this was used to fit the rest of the data. This low d parameter
suggests temporal contiguity bias was weak in the context of
this study.

Unintentional Agent Model

When the agent does not appear to be intentional, the model
assumes that the observed actions are independent of beliefs
and desires (See Figure 1b). This model makes the simple
structural assumption that the observed outcomes (O) in the
world are determined by the agent’s actions (A) and the un-
derlying causal structure (W). The posterior is then just:

P(W|0,A) =< P(O|A,W)P(W)P(A) 3)

Two-agent Model

We used a mixture model to model two agents. The model
makes independent inferences for each agent and weights the
posteriors together. For example, if one intentional agent and
one unintentional agent each performs an action, then the
model mixes the intentional agent model together with the
unintentional agent model to predict the likely causal rela-
tionships. The posterior is computed via a weighted sum of
the independent predictions of each model.

P(W) = ap(vvintent) + (1 - (X)P(‘/Vtminrent) €]

where o is a free parameter. For this model, we set o to 0.5
to give equal weight to both sets of inferences.



Figure 2: Experimental Materials for the human (left), vacuum-bot (center), and two-agent (right) conditions. Top figures show
the movement trajectories of the agents. Agents interact with boxes at positions 2 and 3. The figures below show the positions
of the agents right when the door opens. After the door opens, the agents move through the door and the animation ends.

Method
Participants

We collected sample data from 180 participants on Amazon
Mechanical Turk, and excluded 9 participants due to flat-line,
slow responding, or failing the attention check. The final
sample consisted of 171 participants (35% females; 98% na-
tive English speakers; Mo, = 38.1; SDyg, = 10.0).

Materials

We constructed 3 video stimuli where an agent moves around
aroom with 3 boxes (1 blue, 1 pink, and 1 orange) and a metal
door (Figure 2). In the human and robot agent conditions, the
presented actions were identical, however, we manipulated
the agent shown—human vs. vacuum-bot. The agent first
moves toward the door before proceeding to push the blue
box followed by the pink box. For intentional agents, this
action signals their desire to open the door. The boxes make
a beeping sound and flash blinking lights after being pushed.
After pushing the pink box, the agent then moves toward the
door. Nine seconds after the pink box is pushed, the door
opens and the agent moves through the door. This time lag
exceeds expected delays between contingent events (Shanks,
Pearson, & Dickinson, 1989) and ensures that people’s causal
judgements are less likely biased by temporal proximity.

In the two-agent condition, both a human agent and
vacuum-bot were shown. The actions of the human agent
were identical to the human condition up to the point where

the agent pushes the blue box. After pushing the blue box, he
moves straight to the door instead of moving toward the pink
box. The vacuum-bot is then shown to push the pink box.
Nine seconds after the pink box is pushed, the door opens
and the human agent moves through the door.

Procedure

Participants were randomly assigned to the experimental con-
ditions: human agent, robot agent, and two-agent. Depending
on the condition, they were shown the corresponding video
stimuli described above. After watching the video, partici-
pants answered questions based on the video they saw. A
single frame of the video was provided below the questions
to facilitate recall. Specifically, they were asked how likely
they thought that interacting with the different boxes caused
the door to open on a Likert scale from 1 (Extremely Un-
likely) to 7 (Extremely Likely). They rated a series of differ-
ent possible combinations (i.e. “blue box only”, “pink box
only”, “blue and pink boxes”, “blue then pink box”). They
were also asked how likely the agent intended to open the
door. For the two-agent condition, this intention attribution
question was asked for the human and robot agent separately.
Finally, participants were asked for their demographics.

Results
The empirical judgments given by participants and the results
from our model are given in the top and bottom rows, respec-
tively, of Figure 3.
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Figure 3: Human Data (top) and Model Predictions (bottom). All ratings were normalised to sum to 1 within each participant.
Kolgomorov-Smirnov’s D, defined in the text, is a difference measure comparing the model predictions against the human data.
The lower the statistic, the more similar the model’s predictions are to the human data. Kpg ranges from O (perfect similarity)
to 1 (disjoint distributions). B or P refer to interacting with the Blue or Pink box respectively.

We found that people’s causal inferences do, in fact, de-
pend on intentionality. Participants in the human agent con-
dition were more likely to think that “blue-then-pink-box”
caused the door to open compared to the robot (#(110) =
1.99, p = .048) and two-agent conditions (+(104) =2.89,p =
.005). After observing an agent purposefully pushing one box
after the other, people were more likely to think that both ac-
tions as well as the order of the actions are important. This
explanation is further supported by our manipulation check.
Comparing the human and robot agent conditions, we con-
firmed that the vacuum-bot was perceived to be less inten-
tional than the human (¢(96.8) = 3.06, p = .002). It is worth
noting that people still generally regarded the vacuum-bot as
intentional (Mp,, = 5.66 out of 7, SD = 1.59, compared to
Mpyman = 6.38 out of 7, SD = .89).

In the two-agent condition, as participants observed the
human agent interacting with the blue box, they were more
likely to think that the blue box caused the outcome com-
pared to the human (¢(105) = 3.63, p < .001) and robot agent
conditions (¢(116) = 2.63, p = .01). Again, we found within
the two-agent condition that the vacuum-bot was perceived to
be less intentional than the human (¢(57) = 5.40, p < .001).

It is puzzling that participants generally gave the highest
likelihood to “both-boxes” and “blue-then-pink-box™ across
all conditions. In fact, the likelihood ratings for “both-boxes”
do not significantly differ across conditions (F(2,168) =

.58, p = .56). In the next section, we propose a few expla-
nations for these findings and modified our model based on
these ideas to compare with the data.

Model Comparison

We implemented the model in WebPPL to obtain model pre-
dictions!. To assess model fit, we used the Kolgomorov-
Smirnov statistic, Dkg, as a difference measure between the
human data and our model predictions. It is given by the
suprenum of the differences (i.e. maximum distance) in cu-

mulative distribution functions of the two distributions:

Dgs = sup |CDFModel(W) - CDFHuman(W)| 4)
w

Dkgg ranges from 0 to 1; it is O when there is complete overlap
between the two distributions, and reaches its maximum value
of 1 when the two distributions are disjoint.

The intentional agent model predicts that “blue-and-pink-
box” and “blue-then-pink-box™ are the most likely causes of
the door opening as it infers that the agent interacted with the
two boxes in order to achieve their goal of opening the door.
Comparing our model predictions to the human agent condi-
tion (see Figure 3), we see that the intentional agent model
fits the data well (Dgs = .01, p = 1).

ISource code is available at

https://tinyurl.com/agenticaction



However, the unintentional agent model did not fit the par-
ticipants’ ratings well (Dgs = .16, p < .001). Our uninten-
tional agent model predicts that “pink-box-only” and “blue-
box-only” are more likely causes as it tends to favor shorter
hypotheses given the lack of an intentional action sequence.
The human ratings, on the other hand, give considerably more
weight to the conjunction “blue-and-pink” and “blue-then-
pink”. It is possible that while people see the vacuum-bot
as less intentional than the human, they still perceived the
vacuum-bot as somewhat intentional. This second expla-
nation is supported by our intention attribution ratings. To
model the possibility that people were attributing some in-
tentionality, we used a mixture model of the intentional and
unintentional agent models (Fig. 1a and b) to infer causality
from the vacuum-bot’s actions. This model weights the two
possibilities together to infer causality>. We found that this
model was a better fit of the data (Dgs = .04, p = .99), which
is more evidence that people might have attributed some de-
gree of intentionality to the vacuum-bot.

Finally, we consider the two-agent condition. The two-
agent model is itself a mixture of two agents, and makes two
independent inferences of W given each agent’s observations
separately. This model predicts that “blue-box-only” is the
most likely cause as the intentional agent model assigns high
likelihood to the box the human interacted with. Human par-
ticipants also favored the blue box as a cause over the pink
box. However, our model, which we will denote as two-
agent-independent in Fig. 3, still did not fit the data well
(Dgs = .13, p = .01). Participants gave high plausibility to
the conjunctive hypotheses even when the actions were per-
formed by two separate agents. One possible explanation is
that they did not perceive the actions of the two agents to be
independent. For example, some people might have thought
that pushing the pink box was part of the vacuum-bot’s func-
tion to aid the human in opening the door. To account for
this possibility, we mixed the original two-agent model with
another model that assumes the two agents were cooperating
with one another?. This second model assumes the two agents
share joint beliefs (and desire) which account for their com-
bined actions. Structurally, this model is equivalent to the in-
tentional agent model where the belief and actions are treated
as if they came from a single agent. This modified two-agent-
cooperative model fits the data well (Dgs = .03, p = .99).

How Intentionality Guides Causal Inference

Our findings show that observational causal learning is well-
modelled by a Bayesian rational agent model. When observ-
ing an intentional agent, people assume that their actions are
not random but determined by the agent’s beliefs and plan-
ning. This process encodes temporal information and allows
people to learn causal chains through observation.

2The mixture parameter (o = .9) was chosen by optimizing for
the lowest RMSE.

3The cooperative model was given a weight of .7 while the orig-
inal two-(independent)-agent model was given a weight of .3. These
free parameters were chosen by optimizing for lowest RMSE.

This process may even be used to learn from the actions
of non-humans such as robots and animals. Despite our at-
tempts to make the vacuum-bot look unintentional follow-
ing theories on intentionality perception (Perez-Osorio &
Wykowska, 2020), people still attributed high intentionality
to the vacuum-bot and inferred causality from its actions sim-
ilar to that of a human’s. This provides evidence that people
seem to default toward taking an intentional stance (Dennett,
1989) and readily learn from semi-intentional agents’ actions
as if they had beliefs and desires.

In the real world, people often observe multiple agents act-
ing upon the world. We showed how humans can still learn
from these scenes by performing an inference for each agent
and integrating them. During this process, we can also incor-
porate other assumptions about these agents such as whether
they are acting independently or cooperatively (or perhaps
even antagonistically; Ullman et al., 2009).

Interestingly, people were inclined to think that the actions
of the human and vacuum-bot were not independent. One
possibility is that people perceived the vacuum-bot to be aid-
ing the human as part of its function. This reference to the
design of the vacuum-bot is an important element. For ex-
ample, it is insufficient that observers assume that the human
agent has knowledge that the robot agent will push the pink
button. This is because this robot agent could have pushed the
pink button for any number of reasons and this event would
likely not be seen as causally relevant. For the human’s and
vacuum-bot’s actions to be seen as jointly relevant, observers
have to assume that the vacuum-bot is pushing the pink button
in order to help the human agent open the door as part of its
design. While this interpretation of the results is intriguing, it
is an open question whether it can be generalised. More work
needs to be done to see if humans readily ascribe intentional
(cooperative) design to other non-human agents.

In this study, we aimed to test the validity and extend the
application of Goodman et al.’s (2009) model of observa-
tional causal learning. This model is coherent with exist-
ing research and was also successful in explaining much of
our data. However, it is worth noting that other potential
explanations exist. We saw that across all three experimen-
tal conditions, people seemed to give high causal weight to
the conjunctive hypotheses (e.g. blue-and-pink, blue-then-
pink). Instead of arguing for the intentionality of the agents
or the dependence between the multiple agents, it might be
more parsimonious to assume a human bias toward conjunc-
tive hypotheses. When lacking strong priors of the causal
structure, people might view all observed actions as causally
relevant similar to the phenomenon of over-imitation (Lyons
et al., 2007). Future work should compare these two compet-
ing explanations to test if intentionality is really necessary for
humans to quickly infer conjunctive causal beliefs.

Conclusion

When we see other agents in the world, we are quick to as-
cribe intentionality to them. This allows us to better under-



stand these agents’ actions and by extension, to learn about
the world. We presented a computational description of how
humans make this leap from intention to causality by assum-
ing that these agents are acting rationally and in accordance to
their desires. We showed how humans flexibly apply this pro-
cess to infer causality from semi-intentional agents as well as
multi-agent contexts, which has implications for how people
learn about their surroundings through social observation.
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