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Abstract

Attention mechanisms in deep neural network models have helped them to achieve
exceptional performance at complex natural language processing tasks. Previous at-
tempts to investigate what these models have been “paying attention to” suggest that
these attention representations capture syntactic information, but there is less evidence
for semantics. In this paper, we investigate the capability of an attention mechanism to
“attend to” semantically meaningful words. Using a dataset of naturalistic emotional
narratives, we first build a Window-Based Attention (WBA) consisting of a hierarchical,
two-level long short-term memory (LSTM) with softmax attention. Our model out-
performs state-of-the-art models at predicting emotional valence, and even surpassing
average human performance. Next, we show in detailed analyses, including word dele-
tion experiments and visualizations, that words that receive higher attention weights
in our model also tend to have greater emotional semantic meaning. Experimental re-
sults using six different pre-trained word embeddings suggest that deep neural network
models which achieve human-level performance may learn to place greater attention
weights on words that humans find semantically meaningful to the task at hand.
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1. Introduction

Deep Learning has achieved remarkable performance at complex natural language
processing (NLP) tasks. One innovation in particular, neural network attention [4], has
revolutionized the way deep language models solve tasks like machine translation [38],
summarization [12], and emotion understanding [73, 72]. The most basic form of neu-
ral network attention involves learning a weighted sum of input tokens, for example, a
weighted sum over the words (represented as vectors) of a sentence. More recent atten-
tion mechanisms attempt to learn more complicated sums: For example, self-attention,
which has become the core of successful state-of-the-art models like the Transformer
[63], and BERT [15], learns a weight for each pair of tokens. However, one main
criticism of deep language models is their lack of interpretability or explainability [3].
In this paper, we specifically examine deep neural network attention within the con-
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text of an emotion understanding task, and investigate the capability of an attention
mechanism to “pick out” semantically meaningful words.

In recent years, researchers have been interested in “peering into the black box” to
try to understand what is it that attention mechanisms are paying attention to. Recent
work has suggested that attention-based models like BERT [15] and GPT-2 [51] en-
code syntactic information [60], in that the learnt representations encode dependency
relations between head words and their modifiers [13], encode distances in the sentence
parse-trees [24], and can be used to identify syntactic categories like parts-of-speech
[34, 64].

However, these efforts in studying attention and syntax stop short of showing ev-
idence that attention mechanisms learn to pick out the semantic information neces-
sary to solve specific linguistic tasks. Compared to semantics, syntactic information
is more “basic” and is generalizable across a wider-variety of language tasks, and it is
not surprising that analyses on attention mechanisms should first examine syntax. The
next step in the language understanding pipeline [8] involves understanding semantics,
which is task-specific. The semantics relevant to a translation task are rather different
compared to that of an emotion-classification task. This highlights the difficulty of
“probing” semantic understanding, and suggests that we need to start with a task that
has relatively well-defined semantics. Additionally, it would be helpful if the chosen
task semantics are also intuitive for human readers, to serve as a sanity check. For these
reasons, we choose to analyze attention in an emotion understanding task—predicting
the real-valued emotional valence of a speaker describing an emotional life event, i.e.,
a narrative.

As we are dealing with long narratives, a traditional Recurrent Neural Network
(RNN) model is not a good option since one notable weakness of RNNs is their inabil-
ity to handle long sequences, due to vanishing gradients [47] as they are propagated
back through the recurrent connections. Therefore, inspired by [33], we chose to use a
hierarchical (two-level) Long Short-Term Memory (LSTM) for our model architecture.
In particular, one LSTM network is used to encode a short window of words (e.g., a
sentence or a time-based window), and another LSTM network is used to encode the
sequential information of the whole narrative. The advantage of this approach is that
LSTM networks in the model do have to deal with too-long sequences, thus avoiding
the issues including vanishing gradients, while still being able to take into account the
context of the whole sequence.

Our contributions are as follows. First, we propose a Window-Based Attention
(WBA) model which exploits a hierarchical RNN with a softmax attention mecha-
nism to predict emotional valence. In particular, we use a two-level LSTM network
to encode local and global sequential information of linguistic content. We apply an
attention layer after the first LSTM to produce a local contextual encoding that is then
passed to the second, global-level LSTM. We show that our proposed model outper-
forms state-of-the-art models on our chosen task, in fact, significantly surpassing hu-
man performance. Secondly, we present detailed analyses of attention weights showing
that our attention layer tends to pick out words with high emotion semantics.
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2. Related Work

2.1. Attention-based models for Emotion Understanding and Sentiment Analysis
The task we choose here, emotion understanding, is closely related to sentiment

analysis [8], and is well-studied in NLP and Affective Computing [7]. From a social-
scientific perspective, the main differences are that emotions are felt in response to an
event (e.g., losing a loved one) and could be categorical (happy, sad) or lie along con-
tinuous dimensions (e.g., valence and arousal). On the other hand, sentiment refers
to the attitude that someone has towards a target (e.g., do they feel positive about this
product?), and is often just measured along a single negative-to-positive valence dimen-
sion. Here, our chosen task is predicting emotional valence, measured as a real-valued
number conveying the “degree” of negativity or positivity felt by the speaker. Many
previous papers have tackled predicting intensity of sentiment or emotions [56, 66].
For example, a recent paper [1] proposed a stacked ensemble method consisting of a
multi-layer perceptron network which takes outputs of three deep learning models and
a feature-based model to predict emotion and sentiment intensity.

Attention-based NLP models have proved to be very useful in emotion understand-
ing [73]. Attention mechanisms such as self-attention [52] and cross-modal attention
[31] have been applied for conversational emotion analysis, where the emotion de-
pends on the utterance in context. In addition to text, attention-based models are com-
monly used for multimodal emotion understanding, using other modalities like speech
[41, 78, 59] and vision [57, 67, 42]. Recent models have applied attention on top of pre-
vious established approaches, such as using Convolutional Neural Networks (CNNs)
to extract features from audio spectrograms, and then learning an attention distribution
over those features [48, 6].

Attention mechanisms have also been widely adopted for sentiment analysis [80],
especially for aspect-level [68] and multimodal [25] sentiment analysis. In aspect-level
sentiment analysis, the objective is to identify the sentiment for a specific aspect (e.g.,
a phone’s price or its battery life). Previous models have used attention to learn the
connection between an aspect and input content [68, 36, 5]. For example, [72] proposed
a context-dependent attention mechanism, and [35] proposed a hierarchical attention,
which both attempt to learn aspect-specific attention distributions. Attention-based
models have also been used for multimodal sentiment analysis. For example, [30] and
[25] proposed attention-based gating mechanisms to learn the relative importance of
different modalities, such as text, audio and image, for predicting sentiment.

2.2. Previous model architectures
There are many recent NLP papers that use deep neural network models like LSTMs

to achieve high performance for time-series emotion prediction in challenging datasets
[79], including the dataset that we use [45, 73]. As we are dealing with long narratives,
for our model architecture, we chose to use a hierarchical (two-level) LSTM. One no-
table weakness of RNNs is their inability to handle long sequences, due to vanishing
gradients [47] as they are propagated back through the recurrent connections. There
are two popular methods to address this limitation: The first uses ‘gates’ that allow
longer-range dependencies (e.g., as in the LSTM network), while a second method
uses a hierarchy such that the model learns dependencies at different time-scales.
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To handle long sequences for document modeling, Lin et al. [33] introduced Hier-
archical RNNs (HRNNs), which consists of two independent but nested RNNs, one at
the word-level and one at the sentence-level, which improved performance on a ma-
chine translation task. HRNNs have also been used in text generation: Yu et al. [75]
presented a HRNN that contains a sentence generator and a paragraph generator to
generate paragraph captions for videos, and Krause et al. [29] used a HRNN to gen-
erate paragraph descriptions for images. HRNNs are also used for other modalities,
such as speech recognition [9]. Most similar to our work is Yang et al. [74], who
proposed a two-level HRNN with attention for document-level classification. One dif-
ference with our work is that our model predicts a real-valued label for each window
instead of predicting a class for the whole document. Finally, Ma et al. [39] showed
that a hierarchical LSTM with attention and commonsense knowledge performed well
at aspect-based sentiment analysis, and presented some preliminary analyses on their
attention weights. We go further and demonstrate that attention in our model captures
emotion-relevant semantics.

2.3. Interpretability of Attention
One of the main contributions in this paper is the analysis of the attention layer. As

we mentioned, attention mechanisms have shown to be effective at improving perfor-
mance on NLP tasks such as machine translation [38, 4], reading comprehension [10]
and semantic parsing [16]. Because of the exemplary performance of attention mech-
anisms, many researchers have attempted to analyze attention weights and what they
actually learn, as a method to “explain” what the deep learning model is doing.

Earlier studies in attention have focused on investigating what attention does within
the model. Cheng et al. [11] modified an LSTM model to perform language mod-
elling using shallow reasoning with memory and local attention over hidden states, and
showed, in a reading task, that attention tended to focus on recent “memory” states
(i.e., the hidden representations of nearby tokens). Martins and Astudillo [40] intro-
duce sparsemax, a new activation function similar to softmax, and show its capabil-
ity of highlighting “key” words for making decision in a Natural Language Inference
task. Some studies have also suggested that the attention weights may be human-
interpretable. Pappas and Popescu-Belis [46] had human judges rate the importance of
each sentence to the entire document (a product review), and found strong correlations
between the ratings of human judges and the value calculated by machine attention in
a document classification task. Most recently, Donkers et al. [17] provided sentences
(from product reviews) which had received high attention weights, as explanations
to support product recommendations, and provided preliminary survey evidence that
users found such explanations as relevant and helpful.

It is also worth mentioning self-attention in Transformer-based models [63] such
as BERT [15] and GPT-2 [51]. These self-attention distributions have been shown to
encode or align with syntatic information such as part-of-speech, dependency relations
and coreference [64, 60, 13]. Besides syntatic properties of Transformer-based models,
one recent paper also showed that structured self-attention weights encode semantics
across multiple sentiment analysis tasks [71]. Overall these papers, both for softmax
attention (like the ones we study here) and self-attention, provide support for the idea
that attention may have some interpretability.
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On the other hand, there are also dissenting papers showing that attention weights
are not (or only weakly) correlated with feature importance measures such as gradient-
based methods [26, 55], and that there exist alternative “counterfactual” attention dis-
tributions that yield equivalent model predictions [26, 44, 50, 22]. In other words, the
attention distribution learnt by a model is not unique, and one can generate alterna-
tive distributions that produce the same predictions—this would suggest that attention
distributions are not learning anything “true” like the underlying semantics. Vashishth
et al. [62] elaborated on these results, and suggest that attention weights are inter-
pretable only in certain tasks (e.g., sequence-to-sequence tasks). Recently, Wiegreffe
and Pinter [69] also presented issues with analyzing explanabilities of attention weights
using “counterfactual” weights, and argued that such a claim was ambiguous in its def-
inition of explanation and may only work in certain parts of the neural network. To
increase the explainability of the attention weights, very recent frameworks have also
been developed to explain attention weights such as attributing attention weights using
a hierarchical tree structure [23], analyzing attention weights as a vector norm [28],
and interpreting attention weights using a gradient update process [58].

While our paper does not claim to resolve this debate on what attention is or is not,
we feel that our results do add to this debate. In this paper, we show that our attention
layer is able to “pay more attention” to words that carry emotional semantic mean-
ing. Furthermore, we show that the highly-attended words are essential for model’s
predictions by conducting word deletion experiments (Section 4.4).

Other methods of explanation. Although not studied in this paper, we feel it rel-
evant to mention other methods of “explaining” the decision-making of deep learning
models besides attention. These attribution methods are mostly gradient-based, and use
different methods to calculate the importance of the model input to the model output,
i.e., “∂-output / ∂-input”. (We note that gradients are but one operationalization of “ex-
planation”, such as adopted by Jain and Wallace [26] to suggest that “attention is not
explanation”). One important class of gradient-based methods, Layerwise Relevance
Propagation (LRP), focuses on calculating the “relevance” between input features and
the model outputs, and has been derived for various models like the LSTM [2] and
Transformer [65]. LRP examines the contribution of each token in each layer of a
model to each token in the subsequent layer. Thus, by going backwards from the
model output back through the intermediate layers, one can propagate the relevance
(i.e., the importance of each token) back through the layers. One important example to
the context of this paper is Arras et al. [2], who used LRP to explain sentiment anal-
ysis by a bidirectional LSTM, by computing the relevance score of input words to the
target label. They showed that relevance scores performed better at explaining model
predictions than gradient-based sensitivity analysis, but they did not consider attention.

3. Window-based Attention Model

In this section we describe our window-based attention model which consists of
two-level LSTMs with a softmax attention layer to predict emotional valence scores of
a time-series narrative. We useX = {X1, X2, ..., Xn} to denote a narrative consisting
of n ordered windows. Each input window consists of a sequence of words Xk =
{Xk

1 , X
k
2 , ..., X

k
mk
}, wheremk is the number of words in windowXk,Xk

t ∈ RV is the
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Figure 1: Our proposed Window-based Attention (WBA) model which includes a hierarchical (two-level)
LSTM with attention mechanism to predict real-valued emotion valence in time-series. We implement both
LSTMs using bidirectional LSTMs. In the text, for brevity, we present the equations for forward LSTMs.

one-hot vector of the tth word in Xk, and V is the vocabulary size. The corresponding
valence labels are denoted as Y = {Y 1, Y 2, ..., Y n}, where Y k ∈ R is the real-valued
valence score for windowXk. Given an input narrativeX = {Xk}, where k = [1...n],
the objective is to predict the valence score Ŷ k for each window Xk ∈ X .

Inspired by Lin et al. [33], we propose a WBA model which includes two levels
of RNNs to encode the sequential information of each window (local-level) and the
whole narrative (global-level) (Figure 1). Given a window Xk, WBA first encodes the
window using its window encoder, which uses a LSTM network to compute sequen-
tial information of the words in the window, and a softmax attention layer to obtain
the window’s encoding (Ek). The encoding is then passed to the WBA’s global-level
LSTM to aggregate local and global information before being given to the output layer
to predict the valence score Ŷ k.

We implemented bidirectional LSTM for both local-level and global-level LSTMs,
as shown in Figure 1. When using a bidirectional LSTM, the hidden state for each
time-step is the concatenation of the states of the forward LSTM and of the backward
LSTM. For brevity, we present the equations for the forward LSTM only, to avoid
doubling the number of equations and variables.
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Window Encoder. Given a window Xk = {Xk
t } where t = [1...mk], WBA

computes the sequential information using the local-level LSTM in which the hidden
state at step t is defined as:

hkt = ψ
(
hkt−1,fE(Xk

t |Xk);Wψ

)
(1)

where hkt ∈ Rd is the d-dimensional hidden state at step t; ψ() and Wψ are the local-
level LSTM and its parameters, respectively; fE is the function to transform one-hot
vector to Xk

t to M -dimensional word embeddings, conditioned on the input window
Xk (for contextual embeddings).

WBA computes the attention weights αk = {αkt } based on the attention mecha-
nism introduced in [38]. The attention weight for the tth word is computed by:

αkt =
exp(skt )∑mk

j=1 exp(skj )
(2)

where the score skt is computed as follows:

skt = v>a tanh(Wah
k
t ) (3)

where Wa and va are trainable parameters. The attention weights αkt are used to
calculate the window encoding Ek by weighting the hidden states:

Ek =

mk∑
t=1

αkth
k
t (4)

where mk is the number of words in window Xk. The window encoding Ek is passed
to the global-level LSTM to predict the output valence score.

Valence Prediction. The global-level LSTM takes the window encoding Ek and
computes its hidden stateHk:

Hk = Ψ
(
Hk−1,Ek;WΨ

)
(5)

whereHk ∈ RD is theD-dimensional hidden state of the global-level LSTM at step k;
Ψ andWΨ are the global-level LSTM and its parameters. We base the implementation
of our LSTMs Ψ() and ψ() closely off the formulas in [77].

Finally, the valence score Ŷ k for window Xk is predicted using a simple feed-
forward network:

Ŷ k = Φ
(
Hk;WΦ

)
(6)

where Φ is a multi-layer perceptron (MLP) which includes three linear layers using
ReLU as activation function, andWΦ are parameters of the MLP.

Training WBA. WBA is trained by minimizing the mean squared error loss be-
tween the predicted scores Ŷ and the ground-truth scores Y :

arg min
W

1

n

n∑
k=1

(Ŷ k − Y k)2 (7)

where W = {Wψ,va,Wa,WΨ,WΦ} are model’s parameters to be learnt. The
ground-truth Y k for window k is the averaged valence across the window.
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4. Experiment

4.1. Dataset

To evaluate our method, we used the Stanford Emotional Narratives Dataset (SEND)
[45]1, a recently released dataset consisting of videos of people narrating emotional
events in their lives. The dataset consists of 193 video clips (i.e. stories), lasting an
average of 2 minutes and 15 seconds. For our purposes, we only use the text modality
of their multimodal dataset. The training, validation and test sets have 114, 40 and 39
stories respectively, using the same splits as in [45].

The stories were annotated by an average of 20 independent raters, who used a
continuous slider to rate emotional valence: how they thought the person in the video
was feeling as they were telling the story. This provided a continuous rating (rescaled
to -1 to 1) that was sampled every 0.5 second. The gold-standard label is the Evaluator
Weighted Estimator (EWE) of the independent valence ratings, which is a weighted
average that downweights idiosyncratic outliers and helps to ensure more reliable rat-
ings. We refer the reader to the original dataset paper for more details on the dataset
collection and annotation.

4.2. Experiment Setup

Pre-trained word embedding models. We investigate the explainability of our
window-based attention model when using different pre-trained word embedding mod-
els including both context-free and contextual embeddings. Context-free word em-
beddings contain a single word representation (i.e. embedding) for each word in a
pre-defined vocabulary. By contrast, contextual word embeddings generate a represen-
tation for a word that depends on the context the word appears. For context-free word
embeddings, we use GloVe [49] (840B tokens, 300d vectors). For contextual word
embeddings, we use BERT [15], DistilBERT [53], RoBERTa [37], GPT-2 [51], and
ELECTRA [14]. To obtain the contextual embedding for a word, we use the corre-
sponding last hidden state when the sentence (or window) containing the word is given
as input.

Our methods. For our WBA model, we choose window sizes of 3, 5, or 10 seconds
(denoted as WBA-3s, WBA-5s, and WBA-10s respectively). For each window size, we
choose the best padding length based on validation set, the values are 15, 25 and 40
for window size of 3, 5, and 10 seconds, respectively. We first compare the effect
of using these different window sizes and then use the best setting for the rest of the
experiments.

During training, the target prediction for each window is the averaged valence rat-
ings across the window. During prediction, the predicted valence for a window is
repeated based on the corresponding timing of the window.

Baselines. We compare with previously published models on the SEND including
Encoder-Decoder LSTM (EncDec LSTM) [45], Variational Recurrent Neural Network
(VRNN) [45], Simple Fusion Transformer (SFT) [73], Memory Fusion Transformer
(MFT) [73], Attention-based Encoder-Decoder (Att-ED) [71], and Affect2MM [43].

1https://github.com/StanfordSocialNeuroscienceLab/SEND

8



EncDec LSTM consists of two LSTM layers with a local attention layer in between.
VRNN takes into account implicit sources of variation by adding a generative compo-
nent to an RNN. SFT uses CNNs to process input features before passing to a Trans-
former layer and predicts a valence score for each window using a LSTM decoder
layer. MFT adapts Memory Fusion Network [76] to learn attention across different
modalities. Att-ED adopts the encoder-decoder architecture in which the encoder is
identical to Transformer’s encoder and the decoder consists of a LSTM, followed by a
multilayer perceptron for predicting valence scores. Affect2MM uses attention-based
methods and Granger causality to model the temporal causality for predicting emo-
tional state evoked in videos. In Table 2, we report the best result for each baseline
model, i.e., EncDec LSTM, VRNN, SFT and Att-ED on text modality, MFT on vi-
sual, audio and text modalities, and Affect2MM on audio and text modalities (i.e.,
Affect2MM-AT).

To evaluate the effect of using our proposed two-level LSTM with attention, we
implement several additional baselines as “lesioned” versions of our model: flattened
LSTM (F-LSTM) and window-based without attention models (WB). F-LSTM has
only one bidirectional LSTM and predicts valence for each word using the same output
layer’s structure as in WBA. WB is the same as WBA except that in WB, the window
encoding is the last hidden state of the local-level LSTM. We run WB for window size
of 3, 5, and 10 seconds that are denoted as WB-3s, WB-5s and WB-10s, respectively.

Settings and Hyperparameters. For both local-level and global-level LSTMs, we
use bidirectional LSTMs with hidden dimension of 128 (d = D = 128). The output
dimensions of the linear layers of the output MLP Φ are 128, 64 and 1, respectively.
In WBA model, there are about 943K trainable parameters in total. We used the Adam
optimizer [27] with a learning rate of 0.001. During training, we apply a dropout rate
of 1% to the input embeddings. All the experiments we conducted (including F-LSTM,
WB, WBA) were run n = 20 times and we report the average scores.

Evaluation metric. We use the same evaluation metric as in [45]: the Concor-
dance Correlation Coefficient (CCC) between the model’s predicted valence Ŷ and the
gold-standard label Y . The CCC [32] is given by:

CCC ≡
2ρY Ŷ σY σŶ

σ2
Y + σ2

Ŷ
+ (µY − µŶ )2

(8)

where ρY Ŷ gives the Pearson correlation of Y and Ŷ , and {µY , µŶ } and {σY , σŶ }
give the means and standard deviations of Y , Ŷ respectively.

4.3. Evaluating the window-based attention model.
We first evaluate the effects of using the hierarchical (two-level) LSTM and the

attention mechanism by comparing F-LSTM, WB and WBA models. We use GloVe
embedding for this experiment. Each model is run n times (n = 20) to ensure sta-
ble results. We compute and report the mean CCC and the standard deviation across
the runs for the validation and test sets. Table 1a shows the results of our proposed
models and the baselines. Our baseline window-based models without attention (WB)
outperform F-LSTM, showing that a hierarchical LSTM performs better at encoding
sequential information for long text content. Attention further improves performance:
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Model (GloVe) Validation Test

No
Att.

F-LSTM 0.42 (0.06) 0.43 (0.07)
WB-3s 0.51 (0.02) 0.50 (0.02)
WB-5s 0.48 (0.02) 0.45 (0.02)
WB-10s 0.41 (0.01) 0.41 (0.03)

With
Att.

WBA-3s 0.55 (0.02) 0.55 (0.02)
WBA-5s 0.57 (0.02) 0.58 (0.01)
WBA-10s 0.55 (0.02) 0.52 (0.02)

(a) Evaluating the effect of window-based (WB) approach
and the use of attention (Att.). Window lengths are in 3, 5,
and 10 seconds denoted as 3s, 5s, and 10s, respectively. In
general, WB models outperform flattened LSTM (F-LSTM).
Using attention (With Att.) improves the results and the set-
ting of 5-second window with attention (WBA-5s) achieves
the best results. GloVe embedding is used.

WordEmb Sentence WBA-5s
GloVe 0.54 (0.03) 0.58 (0.01)
BERT 0.57 (0.03) 0.65 (0.02)
DistilBERT 0.53 (0.02) 0.63 (0.02)
RoBERTa 0.61 (0.02) 0.62 (0.02)
GPT-2 0.42 (0.03) 0.40 (0.03)
ELECTRA 0.36 (0.02) 0.38 (0.02)

(b) Evaluating our WBA model with different pre-trained
word embedding models (WordEmb). An input window is
a sentence or a window of 5 seconds (WBA-5s). Average
CCC scores for the test set are reported. Using window of 5
seconds outperforms using sentence for almost all the word
embeddings (except for GPT-2). WBA-5s with BERT em-
bedding achieves the best result.

Table 1: Evaluating window-based attention (WBA) model in predicting emotion valence. Concordance
correlation coefficient (CCC) results of different setups of the model. Each result is averaged over 20 runs.
All models are consistent over different runs as the standard deviations of the results (shown in parentheses)
are very low.

The WBA model outperforms WB across all the settings. Interestingly, with the atten-
tion module, WBA better handles longer windows as the best window size option for
WBA is 5 seconds, whereas in WB, it is 3 seconds.

Next, we sought to compare different word embeddings by comparing GloVe with
other contextual word embedding models (Table 1b). Since contextual word embed-
ding models were trained using whole sentences, we compare the model performances
when our window input is sentence-based (i.e. each sentence is a window) compared
to time-based (using a 5-second window, which was the best setting for WBA). Table
1b shows the CCC scores for the test set for both sentence-based (Sentence) and time-
based (WBA-5s). WBA-5s performs better than sentence-based in almost all the word
embeddings, except for GPT-2. This could be due to the nature of the dataset we used,
which was created based on spoken narrative where the content and sentences (e.g.,
with occasional disfluencies) are not as standard as in written linguistic data. Contex-
tual word embeddings such as BERT, DistilBERT and RoBERTa performs better than
the context-free GloVe, but we also find that GPT-2 and ELECTRA do not perform as
well as GloVe. The low standard deviation values imply that the models are consistent
over the different runs. Overall, WBA-5s with BERT embedding does the best.

Third, we compare the performance of our WBA-5s-BERT model with previously
published results on this dataset. Table 2 shows the comparison results for validation
and test sets. Except for Affect2MM-AT, our model outperforms all the other baselines
with significant margins on both validation and test sets. Compared to Affect2MM-AT,
the performance on validation set is comparable and WBA-5s-BERT performs better
on the test set (note that our model only uses text modality, whereas Affect2MM-AT
uses audio and text modalities). It is also noteworthy that the metric, CCC, ranges from
-1 to 1 and the averaged human performance on the test set is only 0.50, implying that
achieving high CCC for this task is not easy. Despite this, our WBA-5s model using
BERT significantly outperforms human performance with a CCC of 0.65 on the test
set (two-tailed paired t-test, t=3.81, p< .001). In the next section, we analyze the input
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Model Validation Test

Previously
Published

EncDec LSTM [45] 0.38 0.40
VRNN [45] 0.43 0.42
SFT [73] 0.34 0.34
MFT [73] 0.42 0.44
Att-ED [71] - 0.54
Affect2MM-AT [43] 0.59 0.60

Our Model WBA-5s-BERT 0.54 0.65
Human Performance [45] 0.47 0.50

Table 2: Averaged concordance correlation coefficient (CCC) scores for the previously published baselines
and our proposed model. Our window-based model with window size of 5 seconds using BERT (WBA-
5s-BERT) performs the best among all the baselines on the test set, even outperforming average human
performance.

0.00

0.05

0.10

0.15

0.20

GloVe BERT DistilBERT RoBERTa GPT-2 ELECTRA Random

Adjective Noun Verb Adverb Others

Figure 2: Average attention weights for part-of-speech (POS) tags with standard errors. The right-most
column shows the results for the case where attention weights are randomly distributed within the window,
showing that the distribution across POS tags is approximately uniform. We find that across all the models
tested, Adjectives receive the most attention weight.

tokens assigned high attention weights by our WBA-5s model in terms of their syntax
and semantics.

4.4. Attention Analysis

In order to qualitatively evaluate our proposed WBA model, we analyzed the atten-
tion weights generated by the best model on unseen data, i.e., the test set. We choose
the best performing model (WBA-5s) and examined the words (tokens) that received
the most attention from the model, in terms of syntactic and semantic information.
We investigated the attention weights for GloVe, BERT, DistilBERT, RoBERTa, GPT-
2 and ELECTRA. For each word embedding, we used the best model across all the
different runs to generate the analysis results.

4.4.1. Analysing Syntax
The key pieces of information to understanding the emotions in a narrative life

story are the various events described in the story. Syntactic information such as part-
of-speech (POS) has been widely used for event extraction [70], which often proceeds
by extracting text relations mediated by Verbs and Verb patterns [20, 19], and relations
mediated by Nouns and Adjectives [54]. Emotions in particular are reactions caused by
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Figure 3: Average concordance correlation coefficient (CCC) when randomly deleting words (Rand-Del) or
deleting words with highest attention weights (Att-Del). Rand-Del’s results are averaged over 10 runs of
randomly deleting words. Standard deviations across the runs are also visualized.

events [18], and therefore, we hypothesize that to understand the emotions in a story,
the model should attend more to Verbs, Nouns and Adjectives. In this section, we
examine this hypothesis by analyzing the attention weights distributed to POS tags.

We ran the Stanford CoreNLP POS Tagger [61] on stories’ text content to get the
POS tag for each word and assign the word’s attention weight to the corresponding
tag. We are interested in the coarse-grained POS tags, so we grouped tags of the same
type—e.g. adjective comparative and superlative are grouped into adjective—and com-
puted the average attention weights and the standard errors. The results are plotted in
Figure 2. To serve as a comparison to understand our results better, we also included a
“Random” subgraph where words are randomly assigned attention weights (normalized
for each window). As we would expect, for randomly-assigned weights, the attention
distribution across the POS-tags is uniform. Interestingly, our WBA-5s model attended
the most to Adjective for all the different word embeddings tested. Overall, Nouns and
Verbs also received high attention scores across all the models, but their relative im-
portance differed by model. This result supports our hypothesis that the model should
attend more on Verbs, Nouns and Adjectives.
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4.4.2. Analysing Semantics
Word deletion. To examine the importance of highly attended words, we ran a

word deletion experiment in which we delete k words in the input of each window.
We compare the results when we randomly delete k words (Rand-Del) versus deleting
the k words that have the highest attention weights in a window (Att-Del). For each
value of k, we ran 10 times for Rand-Del and report the average result with its standard
deviation across the runs. We varied the number of words to be deleted from k =1 to
10, and a window is ignored if it has less than k words. The goal of this experiment is
to evaluate the impact of highly-attended words in a window to the model’s output. We
conducted this experiment for all six pre-trained word embedding models.

As shown in Figure 3, except for GPT-2, deleting highly attended words drastically
reduced the models’ performance, compared to deleting random words. The largest
drop occured for GloVe: When using GloVe, deleting the most-attended word in a
window already significantly reduced performance (from 0.60 to 0.38; paired t-test,
t=3.39 p=.002). The performance continued to drop significantly when deleting two
mostly attended words in a window (from 0.38 to 0.31; paired t-test, t=2.83 p=0.007).
From k = 3 onwards, Att-Del’s performance fluctuated before decreasing. The differ-
ences between Att-Del and Rand-Del are also significant with p < .05 for k = 1...5.
For BERT, when deleting the most-attended word in a window, the performance also
drops significantly from 0.69 to 0.58 (paired t-test, t=4.40, p < .001)

It is interesting to note that even though ELECTRA does not do as well on this task
(average test-CCC of 0.38; Table 1), it still shows the same consistent pattern where
there is a significant difference between Att-Del and Rand-Del. The only exception
to this pattern is GPT-2, where the drop in performance is similar across both Att-
Del and Rand-Del (and we note that it is also not among the top performing word
embeddings, from Table 1). We do not know why this might be so, but we hypothesize
that perhaps the performance of GPT-2 on this task might come more from other parts
of the model (e.g., word embedding weights) rather than the attention. Future work
should investigate this on other tasks.

We concatenated the results from Att-Del and Rand-Del for all the values of k and
perform the paired t-test for each word embedding. The results show that the differ-
ences between Att-Del and Rand-Del for all the word embeddings, except for GPT-2,
are significant (with p< .001). The results clearly show that the top words attended by
our model (for all the word embeddings except for GPT-2) have a significant impact on
the model performance, providing evidence that the attention weights tend to pick out
words that are important for model performance.

Word cloud. Figure 4 shows the word clouds generated from the average attention
weight of each word in the test set, for each of the word embeddings studied. We can
see that the most-attended words (e.g. “positive”, “sick”, “blessed”, “crying”, “sum-
mer”) are important to understand the emotions in a story. Again, the only exception
seems to be GPT-2, where the most-attended to words do not seem to carry as much
emotional meaning as the rest of the word embeddings.

4.4.3. Case study
In this section, we show qualitative results generated by our model using the best

settings, i.e. WBA-5s using BERT.
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Figure 4: Word cloud based on the average attention weight of each word in the test set. We only include
words appearing at least 5 times. Popped-out words in GloVe and BERT are important to semantically
understand a story. Highly attended words in GPT-2, however, do not carry emotional meaning which
explains the not-good performance and the behaviour in delete-word experiment.

-0.5 0 0.5
1

2

3

4

5

6

7

8

9

Valence

Ground-truth
W
BA-5s-BERT

Story Content (Words are Highlighted based on Attention Weights)

Figure 5: Visualization of attended words in a window. The stronger the highlighted color, the higher
attention weight received by the word. Gray words indicate words removed in preprocessing. Right: The
corresponding ground-truth and model-predicted valence of each window, transposed such that time goes
vertically downwards, and positive valence is towards the right.
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Figure 6: Predictions of our best model, WBA-5s-BERT, compared with ground-truth valences for three
stories in the test set. The x-axis is time (in seconds) and the y-axis is the valence ranging from -1 (very
negative) to 1 (very positive). Our model is able to predict the valence-trends as the stories go on.

14



Attention Visualization. To visualize the attended words in a window, we high-
light words based on the attention weights they received, as shown in Figure 5. The
figure includes the first 9 windows (∼45s) of a story in the test set. The stronger the
highlighted color, the higher attention weight received by the word. The correspond-
ing ground-truth and predicted valences for each window are also plotted on the right.
As shown in the Figure, our WBA-5s model using BERT is able to attend to impor-
tant words when predicting the desired valence. In the first 3 windows, there is not
enough information for the model to make the decision whether the story is positive or
negative; But at window 4, it attended to ‘hearing’ and ‘crying’, and this was accompa-
nied by a decrease in the predicted valence. In window 6, our model attended to more
semantically meaningful words: ‘... sister were expelled’, and continued to predict a
negative valence score. In the later windows, the model attended on emotional words
including ‘sadness’, ‘powerful’, ‘feels’, ‘encased by ... sadness’.

Visualising Predictions. Figure 6 shows the predictions of our proposed model
along with the ground-truth valences for three stories in the test set. Figure 6a visualizes
the entire story from Figure 5. After the excerpt shown in Figure 5, the story continues
with how sad the father was, and this was accompanied by a decreasing valence score.
Story 2 (Figure 6b) was about a student who had just finished high school and was
looking at college. The tuition fees were high and their family had financial concerns,
making it a difficult decision. The turning point in the valence, again captured by
both ground-truth and our model predictions, occurred when the student won a full
scholarship. As the story went on with how happy the student was, the model predicted
a positive turn in valence. Story 3 (Figure 6c) was about a junior high school student
who was in a running team and took part in parties. Others found out about it and
the student felt embarrassed. Our model was able to generate a downward trend for
the valence of the story. Interestingly, the model was able to reverse the trend (similar
to the ground-truth) when the narrator mentioned that because of the incident, they
started to focus more on studies and hence partied less. Our model’s predictions closely
followed the ground-truth emotion trends of the story even when the story tended to be
all negative.

5. Discussion and Conclusions

In this paper, we proposed a Window-Based Attention (WBA) model combining a
hierarchical LSTM with attention mechanism, for an emotion understanding task that
predicts real-valued emotion valence of a time-series narrative. Experimental results
using different word embeddings on a naturalistic emotion narratives dataset show that
our WBA model outperforms state-of-the-art models, even surpasses averaged human
performance (when using GloVe, BERT, DistilBERT and RoBERTa).

Our second main contribution is a set of extensive analyses on the attention weights
that together provide evidence that the attention layer is capable of attending to words
that carry emotional semantic meaning (conditioned on the model reaching human-
level performance). We should point out that although several analyses (e.g., Fig. 5
and Fig. 6) focus on selected test set examples, they are meant to be illustrative, and the
rest of our analyses (e.g., word deletion, POS tags) are done on the full test set. Indeed,
the analyses should be viewed together as a collection of evidence towards the idea
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that attention does uncover task-relevant semantics. Also relevant to this discussion
is some recent work where we examined self-attention weights in a different model,
the Transformer with GloVe word embeddings [71]; We found that attention scores are
correlated with an external source of emotional semantic meaning, labels from emotion
lexicons.

In this work, we present the analyses for one attention mechanism, i.e., softmax-
concat (or additive) [38]. Similar evaluations and analyses can be applied for other at-
tention mechanisms such as softmax-dot [38], content-based attention [21] and scaled
dot-product attention [63]. Several interesting research questions are: 1) “How do
the different attention mechanisms influence model performance on a given task?”; 2)
“Can all the different attention mechanisms uncover semantic information?”; and 3)
“What factors affect the ability of an attention mechanism in uncovering semantic in-
formation?”. Having comparisons between different mechanisms will shed more light
on the debate. We leave this direction to the future work.

We chose an emotion understanding task specifically because it contains intuitive
semantics, but we see no reason why, on other tasks, one could not also design similar
analyses to probe the link between attention and semantics. Future work should extend
similar analyses to other NLP tasks. For example, our model “paid more attention”
to Adjectives, then Nouns and Verbs, then the other part-of-speech types: This pattern
could very well depend on the task at hand.

In sum, our paper adds to the debate on how one can ‘interpret’ attention. Our
work supports previous work that attention models encode syntax [60] and human-
judged importance [46], by showing evidence that attention-based models may learn to
place higher attention weights on words that humans find semantically meaningful to
the downstream task.
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