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ABSTRACT

We summarize the recent progress made by probabilistic programming as a uni-
fying formalism for the probabilistic, symbolic, and data-driven aspects of human
cognition. We highlight differences with meta-learning in flexibility, statistical as-
sumptions and inferences about cognition. We suggest that the meta-learning ap-
proach could be further strengthened by considering Connectionist and Bayesian
approaches, rather than exclusively one or the other.

Connectionist-versus-Bayesian debates have occurred in cognitive science for decades (Griffiths et
al., 2010; McClelland et al., 2010), with each side progressing in theory, models, and algorithms,
in turn impelling the other side to advance, resulting in a cycle of fruitful engagement. The recent
summary of the meta-learning paradigm that Binz and colleagues proposed in the target article
bridges the two by proposing how meta-learning in recurrent neural networks can address some of
the traditional challenges of Bayesian approaches. But, by failing to recognize and engage with
the latest iteration of Bayesian modeling approaches—including probabilistic programming as a
unifying paradigm for probabilistic, symbolic, and differentiable computation (Cusumano-Towner
et al., 2019)—this article fails to push the meta-learning paradigm as far as it could go.

The authors begin their defense of meta-learning by citing the intractability of exact Bayesian infer-
ence. However, this fails to address how and why meta-learning is superior to approximate inference
for modeling cognition. As the authors themselves note, Bayesian modelers use a variety of approx-
imate inference methods, including neural-network-powered variational inference (Dasgupta et al.,
2020; Kingma & Welling, 2013), Markov chain Monte Carlo (Ullman et al., 2012), and Sequen-
tial Monte Carlo methods (Levy et al., 2008; Vul et al., 2009), which have all shown considerable
success in modeling how humans perform inference (or fail to) in presumably intractable settings.
As such, it is hardly an argument in favor of meta-learning—and against “traditional” Bayesian
models—that exact inference is intractable.

This omission is just one way in which the article fails to engage with a modern incarnation of
the Bayesian modeler’s toolkit—Probabilistic Programming. In the past two decades, we have seen
the development of probabilistic programming as unifying formalism for modeling the probabilistic,
symbolic, and data-driven aspects of human cognition (Lake et al., 2015), as embodied in probabilis-
tic programming language such as Church (Goodman et al., 2012), webPPL (Goodman & Andreas,
2014), Pyro (Bingham et al., 2019) and Gen (Cusumano-Towner et al., 2019). These languages
enable modelers to explore a much wider range of computational architectures than the standard
meta-learning setup, which requires modelers to reformulate human cognition as a sequence predic-
tion problem. Probabilistic programming allows modelers to unite the strengths of general-purpose
predictors (i.e., neural networks) with theoretically-informed constraints and model-based reason-

∗This is a pre-print of a commentary accepted at Behavioral and Brain Sciences. The target article is entitled
“Meta-Learned Models of Cognition” by Binz, Dasgupta, Jagadish, Botvinick, Wang, & Schulz (forthcoming),
and can be accessed here.

1

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/F95059E07AE6E82AE56C4164A5384A18/S0140525X23003266a.pdf/meta-learned-models-of-cognition.pdf


To appear as a commentary in Behavioral and Brain Sciences.

ing. For instance, Ong and colleagues (2021) showed how reasoning about others’ emotions can be
modeled by combining the constraints implied by cognitive appraisal theory with bottom-up repre-
sentations learnt via neural networks from emotional facial expressions. Similarly, several recent
papers have shown how the linguistic abilities of large language models (LLMs) can be integrated
with rational models of planning, communication, and inverse planning (Wong et al., 2023; Ying
et al., 2023), modeling human inferences that LLM-based sequence prediction alone struggle with
(Zhi-Xuan et al., 2024).

What flexibility does probabilistic programming afford over pure meta-learning? As the article
notes, one potential benefit of meta-learning is that it avoids the need for a specific Bayesian model to
perform inference over. Crucially, meta-learning achieves this by having access to sufficiently simi-
lar data at training and test time, such that the meta-learned algorithm is sufficiently well-adapted to
the implied class of data-generating processes. Human cognition is much more adaptive. We do not
simply adjust our learning to fit past distributions; we also construct, modify, abstract, and refactor
entire theories about how the world works (Rule et al., 2020; Tenenbaum et al., 2011; Ullman &
Tenenbaum, 2020), reasoning with such theories on downstream tasks (Tsividis et al., 2021). This
capacity is not captured by pure meta-learning, which occurs “offline”. By contrast, probabilis-
tic programming allows modeling these patterns of thought: Theory building can be formulated as
program induction (Lake et al., 2015; Saad et al., 2019), refactoring as program merging (Hwang
et al., 2011), and abstraction-guided reasoning as coarse-to-fine inference (Cusumano-Towner et al.,
2018; Stuhlmüller et al., 2015). Inference meta-programs (Cusumano-Towner et al., 2019; Lew et
al., 2023) allow us to model how people invoke modeling and inference strategies as needed: one
can employ meta-learned inference when one believes a familiar model applies, but also flexibly
compute inferences when a model is learned, extended, or abstracted. On this view, meta-learning
has an important role to play in modeling human cognition, but not for all of our cognitive capacities.

Another way of understanding the relationship between meta-learning and probabilistic program-
ming is that the former uses implicit statistical assumptions while the latter’s assumptions are ex-
plicit. Meta-learning assumes that the structure of the world is conveyed in the statistical structure
of data across independent instances. With sufficient coverage of the training distribution, flexible
deep learning approaches fit this structure and use it to generalize. But they may not do so in a
way that may provide any insight into the computational problem being solved by humans. Prob-
abilistic programs, by contrast, explicitly hypothesize the statistical patterns to be found in data,
providing constraints that, if satisfied, yield insights for cognition. This implicit-explicit distinction
both frames the relative value of the approaches and suggests an alternative relation: a Bayesian
model need not subsume or integrate what is learned by a deep learning model, but simply explicate
it, at a higher level of analysis. Through this lens, having to specify an inference problem is not a
limitation, but a virtue.

The best of both worlds will be to compose and further refine these paradigms, such as using deep
amortized inference (like meta-learning for Probabilistic Programming), using Bayesian tools (and
other tools for mechanistic interpretation) to understand the results of meta-learning, or construct-
ing neurosymbolic models (e.g., by grounding the outputs of meta-learned models in probabilistic
programs, as in Wong et al., 2023). As a very recent example, Zhou, Feinman, and Lake (2024)
proposed a neurosymbolic program induction model to capture human visual learning, using both
Bayesian program induction and meta-learning, achieving the best of both approaches: interpretabil-
ity and parismony, as well as capturing additional variance using flexible function approximators.
We believe that the field should move beyond ”Connectionist-versus-Bayesian” debates to instead
explore hybrid ”Connectionist-and-Bayesian” approaches.
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